Math, asked by mehakpreet28, 1 year ago

solve the this equation

Attachments:

Answers

Answered by Amaie
0

Hi there! Like this answer? Then hit the heart hard and follow me for more such answers.

Attachments:
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
13

Required solution :

Given equation,

  • \red{\boxed{ \sf{ \frac{m + 3}{m - 2} \:  =  \:  \frac{m + 5}{m - 5}  }}}

Cross multiplying them,

 \longmapsto \: \sf{(m + 3)(m - 5) \:  =  \: (m + 5)(m - 2)}

\longmapsto \:  \sf{(m + 3) \times (m - 5) \:  =  \: (m + 5) \times (m - 2)}

Solving for L.H.S. :-

 \longmapsto \:  \sf{m(m - 5) + 3(m - 5)}

\longmapsto \:  \sf{m \times (m - 5) + 3 \times (m - 5)}

\longmapsto \:  \sf{m {}^{2} - \:  5m +  \: 3m  \: -  \: 15}

 \longmapsto \:   \boxed{\sf{m {}^{2} - \: 2m  \: -  \: 15}}

Solving for R.H.S. :

\longmapsto \: \sf{m(m - 2) + 5(m - 2)}

\longmapsto \: \sf{m \times (m - 2) + 5 \times (m - 2)}

 \longmapsto \: \sf{m {}^{2}  - 2m + 5m  - 10}

 \longmapsto \: \boxed{\sf{m {}^{2} + 3m  - 10}}

Now, keeping them equal.

:   \: \implies \:  \sf{m {}^{2} - 2m - 15 = m {}^{2} + 3m - 10}

Transposing m² to L.H.S.,

:   \: \implies \:  \sf{m {}^{2} - m {}^{2}  - 2m - 15 =3m - 10}

:   \: \implies \:  \sf{- 2m - 15 =3m - 10}

Transposing 3m to L.H.S., it would be negative.

:   \: \implies \:  \sf{- 2m - 3m - 15 =- 10}

:   \: \implies \:  \sf{ - 5m - 15 =- 10}

Now, at last transposing -15 to R.H.S. and it would be positive.

:   \: \implies \:  \sf{ - 5m  =15- 10}

:   \: \implies \:  \sf{ - 5m  = 5}

:   \: \implies \:  \sf{m  =   - \dfrac{5}{5} }

:   \: \implies \:  \sf{m  =   -  \cancel\dfrac{5}{5} }

:   \: \implies \:   \red{\bf{m  =   -  1}}

Therefore,

  • Value of m is -1
Similar questions