Math, asked by Prachi8784, 1 year ago

Solve the trigonometric equation : tan theta + tan 4 theta + tan 7 theta = tan theta * tan 4 theta * tan 7 theta

Answers

Answered by shanujindal48p68s3s
45
Know we know that
 \tan( \alpha  +  \beta  +  \gamma )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) +  \tan( \gamma )   -  \tan( \alpha ) \tan(   \beta )  \tan( \gamma )  }{1 -  \tan( \alpha ) \tan( \beta )  -  \tan( \beta )  \tan(  \gamma )  -  \tan( \gamma )  \tan( \alpha )  }
Now according to question,
 \tan( \alpha )  +  \tan( \beta )  +  \tan( \gamma )  =  \tan( \alpha )  \tan( \beta )  \tan( \gamma )
Thus,
 \tan( \alpha  +  \beta  +  \gamma )  = 0 \\  \alpha  +  \beta  +  \gamma  = n\pi \\ x + 4x + 7x = n\pi \\ x =  \frac{n\pi}{12}
:)
Answered by Anonymous
2

Answer:

Know we know that

\tan( \alpha + \beta + \gamma ) = \frac{ \tan( \alpha ) + \tan( \beta ) + \tan( \gamma ) - \tan( \alpha ) \tan( \beta ) \tan( \gamma ) }{1 - \tan( \alpha ) \tan( \beta ) - \tan( \beta ) \tan( \gamma ) - \tan( \gamma ) \tan( \alpha ) }

Now according to question,

\tan( \alpha ) + \tan( \beta ) + \tan( \gamma ) = \tan( \alpha ) \tan( \beta ) \tan( \gamma )

Thus,

\tan( \alpha + \beta + \gamma ) = 0 \\ \alpha + \beta + \gamma = n\pi \\ x + 4x + 7x = n\pi \\ x = \frac{n\pi}{12}

Similar questions