Math, asked by Anonymous, 23 days ago

Solve these both question of infinite series.

This is complex numbers question given in my book.

Attachments:

Answers

Answered by Anonymous
16

Solution 1 :

Let's assume that,

 \rm x = 2 +  \dfrac{1}{2 +  \dfrac{1}{2 +... \infty } } ----(1)

Now,

 \implies \rm x = 2 +  \dfrac{1}{2 +  \dfrac{1}{2 +... \infty } }

 {\implies \rm x = 2 +  \dfrac{1}{x }  \qquad(equation \: 1)}

 \implies \rm x =  \dfrac{2x + 1}{x }

 \implies \rm x^{2}  =  2x + 1

 \implies \rm x^{2}   -   2x  -  1 = 0

Now, solving it using quadratic formula.

   \implies  \boxed{\rm x =  \dfrac{ - b  \pm \sqrt{ {b}^{2} - 4ac } }{2a}}

  \rm  \implies x =  \dfrac{ - ( - 2)  \pm \sqrt{ {( - 2)}^{2} - 4(1)( - 1) } }{2(1)}

  \rm  \implies x =  \dfrac{ 2  \pm \sqrt{ 4  + 4} }{2(1)}

  \rm  \implies x =  \dfrac{ 2  \pm \sqrt{ 8} }{2}

  \rm  \implies x =  \dfrac{ 2  \pm 2\sqrt{2} }{2}

  \rm  \implies x = 1 \pm \sqrt{2}

Now, since value of x cannot be negative or smaller than 2, x = 1 - √2 is not possible. So the required answer is x = 1 + √2.

Option (B) is correct.

 \rule{300}{1}

Solution 2 :

We have,

{\rm x =  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... \infty} } } ---(1)}

{ \longrightarrow \rm x =  \sqrt{6 +  x }  \qquad(equation \: 1.)}

Squaring both sides

{ \longrightarrow \rm  {x}^{2} =6 +  x }

{ \longrightarrow \rm  {x}^{2} - x - 6 =0}

{ \longrightarrow \rm  {x}^{2} - 3x + 2x - 6 =0}

{ \longrightarrow \rm  x(x  - 3) + 2(x - 3) =0}

{ \longrightarrow \rm  (x  - 3)(x  + 2) =0}

{ \longrightarrow \rm  (x  - 3) = 0 \: or \: (x  + 2) =0}

{ \longrightarrow  \rm  \boxed{  \rm x   = 3} \: or\: \boxed{ \rm x   = - 2}}

Since, the sum of possible values in square root cannot be negative, x = -2 is rejected.

x = 3 is the correct answer.

Option (c) is correct.

Similar questions