Math, asked by ayushanand2017, 7 months ago

solve these Integration.​

Attachments:

Answers

Answered by harshavardhan770
0

Answer:

Please mark as brainliest

Attachments:
Answered by Anonymous
3

Topic:

Integration

Formula used:

\int\tan(x)\ dx = \log(\sec x) + C

\int\dfrac1x\ dx = \log(x) + C

Solution 1:

We need to evaluate the following integral

\displaystyle\int\dfrac{\tan(\ell n \ x)}{x}\, dx

Since the derivative of ln(x) is 1/x, we can solve it using the method of substitution easily.

Put ln(x) = t so that dx/x = dt

The above integral changes to,

\displaystyle\longrightarrow\int \tan(t)\ dt

\displaystyle \longrightarrow \ell n |\sec t| + C

Undoing our substitution for t = ln(x), we get:
\displaystyle \longrightarrow \ell n |\sec \ell n (x)| + C

This is the required answer.

\dotfill

Solution 2:

We need to evaluate the following integral,

\displaystyle \int \dfrac{1}{e^x +1}\ dx

Put x = -u so that dx = du.

The above integral changes to,

\displaystyle \longrightarrow\int \dfrac{-1}{e^{-u} +1}\ du

\displaystyle \longrightarrow\int \dfrac{-1}{\frac1{e^u} +1}\ du

\displaystyle \longrightarrow\int \dfrac{-1}{\frac{1 + e^u}{e^u}}\ du

\displaystyle \longrightarrow\int \dfrac{-e^u}{1 + e^u}\ du

Again, put 1 + eᵘ = y so that eᵘ du = dy.

\displaystyle \longrightarrow\int \dfrac{-dy}{y}

\displaystyle \longrightarrow - \log|y| + C

Undoing our substitution,

\displaystyle \longrightarrow - \log|1 + e^u| + C

\displaystyle \longrightarrow - \log|1 + e^{-x}| + C

\displaystyle \longrightarrow - \log\left|1 + \dfrac1{e^{x}}\right| + C

\displaystyle \longrightarrow - \log\left|\dfrac{e^x+1}{e^{x}}\right| + C

\displaystyle \longrightarrow \log\left|\dfrac{e^x}{e^{x} + 1}\right| + C

\displaystyle \longrightarrow \log|e^x| - \log|e^x + 1| + C

\displaystyle \longrightarrow x - \log|e^x + 1| + C

This is the required answer.

Similar questions