Math, asked by kaushalverma96, 1 year ago

solve these linear equations . plz answer me fast ​

Attachments:

Answers

Answered by praneethks
1

Step-by-step explanation:

(d.)

 \frac{2 - 9y}{17 - 4y} =  \frac{4}{5} =  > 5( 2 - 9y) = 4(17 - 4y)

 =  > 10 - 45y = 68 - 16y =  > 45y -

16y = 10 - 68 =  > 29y =  - 58 =  >

y =  \frac{ - 58}{29} =  - 2

(e.)

 \frac{15}{2 - y} -  \frac{5(y + 6)}{1 - 3y}  = 10 =  >

 \frac{15(1 - 3y) - 5(y + 6)(2 - y)}{(2 - y)(1 - 3y)} = 10 =  >

 \frac{15 - 45y - 5(2y -  {y}^{2} + 12 - 6y) }{(2 - 6y - y + 3 {y}^{2})} = 10 =  >

15 - 45y  + 20y + 5 {y}^{2} - 60 =

30 {y}^{2} - 70y + 20 =  >

30 {y}^{2}  - 5 {y}^{2}  - 70y + 25y + 45 + 20 =

0 =  > 25 {y}^{2} - 45y + 65 = 0 =  >

5 {y}^{2} - 9y + 13 = 0 =  >

y =  \frac{9 +  \sqrt{81 - 260} }{10} or \:  \frac{9 -  \sqrt{81 - 260} }{10}

(f.)

 \frac{1}{4x} +  \frac{1}{6x} = x - 7 =  >  \frac{3 + 2}{12x}  = x - 7 =  >

 \frac{5}{12x} = x - 7 =  > 12 {x}^{2} - 84x - 5 = 0

 =  > x =  \frac{84 +  \sqrt{ {84}^{2} + 12 \times 5 \times 4} }{24} \: or \:

 \frac{84 -  \sqrt{ {84}^{2}  + 12 \times 5 \times 4 } }{24}

Hence

x = (84+√7296)/24 or (84-√7296)/24 =>

x= (84+8√114)/24 or (84-8√114)/24 =>

x= (21+2√114)/6 or (21-2√114)/6.

Hope it helps you.

Answered by riya1504
0

Hey! check the attachment above....

correction at the end-

-58/29 = -2

Attachments:
Similar questions