Math, asked by keva, 11 months ago

solve this...........​

Attachments:

Answers

Answered by shaiknoojahan872591
0

Answer:

xvshhsgsvsbdbs sbzv a kada problem ie a trgsbshs

Answered by MissSolitary
0

 { \blue{ \underline{ \underline{{ \pink{{ \huge{ \mathfrak{ \:  \: S}}} \bold{OLUTION - \:  \:  \: }}}}}}}

{ \tt{ \theta -  \phi =  \frac{\pi}{2} }} \\  \\  \implies{ \tt{  -  \phi =  \frac{\pi}{2} - \theta }} \\  \\  \implies{ \tt{ \phi =  - ( \frac{\pi}{2} -\theta)   }} \\  \\  \boxed{ \implies{ \tt{ \phi =  -  \frac{\pi}{2}  - \theta}}}

To prove :-

{ \tt{\left[ \begin{array}{c c } \sf   { cos}^{2}\theta & \sf  cos \theta \: sin \theta\\\\ \sf \: cos\theta \: sin\theta& \sf \:  {sin}^{2} \theta \end{array} \right] \left[ \begin{array}{c c } \sf   {cos}^{2}  \phi & \sf cos \phi \: sin \phi \\\\ \sf \: cos \phi \: sin \phi& \sf \:  {sin}^{2} \phi  \end{array} \right]  = 0}}

 \implies{ \tt{\left[ \begin{array}{c c } \sf   { cos}^{2}\theta & \sf  cos \theta \: sin \theta\\\\ \sf \: cos\theta \: sin\theta& \sf \:  {sin}^{2} \theta \end{array} \right] \left[ \begin{array}{c c } \sf   {cos}^{2}  ( \frac{\pi}{2} -  \theta)  & \sf cos( \frac{\pi}{2} -  \theta)  \: sin ( \frac{\pi}{2} -  \theta) \\\\ \sf \: cos  ( \frac{\pi}{2} -  \theta)\: sin ( \frac{\pi}{2} -  \theta)& \sf \:  {sin}^{2}   ( \frac{\pi}{2} -  \theta)\end{array} \right]  = 0}} \\  \\  \\  \implies{ \tt{{ \tt{\left[ \begin{array}{c c } \sf   { cos}^{2}\theta & \sf  cos \theta \: sin \theta\\\\ \sf \: cos\theta \: sin\theta& \sf \:  {sin}^{2} \theta \end{array} \right] \left[ \begin{array}{c c } \sf   {sin}^{2}  \theta& \sf sin \theta\: cos\theta\\\\ \sf \: sin \theta\: cos\theta& \sf \:  {cos}^{2} \theta  \end{array} \right]  = 0}}}} \\  \\  \\  \implies{ \tt{{ \tt{\left[ \begin{array}{c c } \sf   { cos}^{2}\theta. {sin}^{2} \theta -   { cos}^{2}\theta. {sin}^{2} \theta && \sf { cos}^{2}\theta. {sin}^{2} \theta -   { cos}^{2}\theta. {sin}^{2} \theta\\\\ \sf   { cos}^{2}\theta. {sin}^{2} \theta -   { cos}^{2}\theta. {sin}^{2} \theta && \sf { cos}^{2}\theta. {sin}^{2} \theta -   { cos}^{2}\theta. {sin}^{2} \theta \end{array} \right]  = 0}}}} \\  \\  \\  \implies{ \tt{\left[ \begin{array}{c c } \sf  0& \sf 0 \\\\ \sf \: 0& \sf \: 0 \end{array} \right]  = 0}}

(proved)

_____________________

@MissSolitary✌️

Similar questions