solve this...........
Attachments:
Answers
Answered by
4
Hello dear,
tanA / [1+tan²A]² + cotA / [1+ cot²A]²
= tanA / sec⁴A + cotA/ cosec⁴A
= tanA (cos4A) + cotA (sin⁴A)
= (sinA/cosA) (cos⁴A) + (cosA/sinA) (sin⁴A)
= sinAcos³A + cosAsin³A
=sinAcosA(cos²A + sin²A)
=sinAcosA (since sin²A + cos²A = 1)
= RHS
HENCE PROVED...
tanA / [1+tan²A]² + cotA / [1+ cot²A]²
= tanA / sec⁴A + cotA/ cosec⁴A
= tanA (cos4A) + cotA (sin⁴A)
= (sinA/cosA) (cos⁴A) + (cosA/sinA) (sin⁴A)
= sinAcos³A + cosAsin³A
=sinAcosA(cos²A + sin²A)
=sinAcosA (since sin²A + cos²A = 1)
= RHS
HENCE PROVED...
Shubhangi4:
thanks
Answered by
4
Hope this attachment will help you Shubhangi.....
In Right hand side there will be sinA/cosA
In Right hand side there will be sinA/cosA
Attachments:
Similar questions