solve this....................
Answers
Step-by-step explanation:
18) 8c(-a+b+c)-[6a(a+b+c)-4b(a-b+c)]
= -8ac+8bc+8c^2-[6a^2+6ab+6ac-(4ab+4b^2-4bc)]
= -8ac+8bc+8c^2-[6a^2+6ab+6ac-4ab-4b^2+4bc]
= -8ac+8bc+8c^2- ( 6a^2 +2ab +6ac+4bc -4b^2)
= -8ac+8bc+8c^2- 6a^2 -2ab -6ac -4bc +4b^2
= 8c^2 +4b^2-6a^2 -14ac + 4bc-2ab
2) 4x(x-4)+13x
4x^2-16x+13x
4x^2-3x
when x= -1
4(-1)^2-3*-1
= 4+3
= 7
when x= 1/2
4x^2-3x
=4(1/2)^2-3*1/2
= 4*1/4 -3/2
= 1-3/2
= 2-3/2
= -1/2
Questions
(a) Subtract 6a (a + b + c) - 4b (a - b + c) from 8c (-a + b + c)?
(b) Simplify 4x (x - 4) + 13x and find its value when
(i) x = -1
(ii) x = ¹/₂
__________________________
Answers
(a) 8c (-a + b + c) - [6a (a + b + c) - 4b (a - b + c)]
First we will solve inside the box brackets
⇒ 8c (-a + b + c) - [6a (a + b + c) - 4b (a - b + c)]
⇒ 8c (-a + b + c) - [6a (a) + 6a (b) + 6a (c) - 4b (a) + 4b (b) - 4b (c)]
⇒ 8c (-a + b + c) - [6a² + 6ab + 6ac - 4ab + 4b² - 4ac]
Now simplify and remove the box bracket
⇒ 8c (-a + b + c) - [6a² + 6ab + 6ac - 4ab + 4b² - 4bc]
⇒ 8c (-a + b + c) - 6a² - 6ab - 6ac + 4ab - 4b² + 4bc
Simplify the brackets
⇒ 8c (-a + b + c) - 6a² - 6ab - 6ac + 4ab - 4b² + 4bc
⇒ 8c (-a) + 8c (b) + 8c (c) - 6a² - 6ab - 6ac + 4ab - 4b² + 4bc
⇒ -8ac + 8bc + 8c² - 6a² - 6ab - 6ac + 4ab - 4b² + 4bc
Combine Like Terms
⇒ -8ac + 8bc + 8c² - 6a² - 6ab - 6ac + 4ab - 4b² + 4bc
⇒ -8ac - 6ac + 8bc + 4bc + 8c² - 6a² - 6ab + 4ab - 4b²
⇒ -14ac + 12bc + 8c² - 6a² - 2ab - 4b²
∴ 8c (-a + b + c) - [6a (a + b + c) - 4b (a - b + c)] = -14ac + 12bc + 8c² - 6a² - 2ab - 4b²
______________________________
(b) First we will simplify then we will substitute the values of 'x' in both cases.
⇒ 4x (x - 4) + 13x
⇒ 4x (x) - 4x (4) + 13x
⇒ 4x² - 16x + 13x
⇒ 4x² - 3x
(i) x = -1
⇒ 4x² - 3x
⇒ 4 (-1)² - 3(-1)
⇒ 4(1) - (-3)
⇒ 4 + 3
⇒ 7
∴ 4x² - 3x = 7 when 'x' = -1.
(ii) x = ¹/₂
⇒ 4x² - 3x
⇒
⇒
⇒
⇒
⇒
∴ 4x² - 3x = ⁻¹/₂ when 'x' = ¹/₂
______________________________