solve this,__________________
Answers
Question:
The sum of the third and the seventh terms of an AP is 6 and their product is 8. Find the sum of first sixteen terms of the AP.
Answer:
The sum of the first sixteen terms of the AP is either 76 or 20.
Step-by-step-explanation:
Let the first term of the AP be "a" and the common difference be "d".
We know that,
tₙ = a + ( n - 1 ) * d
From the first condition,
t₃ + t₇ = 6
⇒ [ a + ( 3 - 1 ) * d ] + [ a + ( 7 - 1 ) * d ] = 6
⇒ a + 2d + a + 6d = 6
⇒ a + a + 2d + 6d = 6
⇒ 2a + 8d = 6
⇒ a + 4d = 3 - - - [ Dividing by 2 ]
⇒ a = 3 - 4d
⇒ a = - 4d + 3 - - - ( 1 )
From the second condition,
t₃ * t₇ = 8
⇒ ( a + 2d ) ( a + 6d ) = 8
⇒ ( - 4d + 3 + 2d ) ( - 4d + 3 + 6d ) = 8 - - - [ From ( 1 ) ]
⇒ ( - 4d + 2d + 3 ) ( - 4d + 6d + 3 ) = 8
⇒ ( - 2d + 3 ) ( 2d + 3 ) = 8
⇒ ( 3 - 2d ) ( 3 + 2d ) = 8
⇒ ( 3 )² - ( 2d )² = 8 - - - [ ( a + b ) ( a - b ) = a² - b² ]
⇒ 9 - 4d² = 8
⇒ 9 - 8 = 4d²
⇒ 4d² = 1
⇒ d² = 1 / 4
⇒ d = ± ( 1 / 2 )
⇒ d = ± 0.5
Now, we know that,
Sₙ = ( n / 2 ) [ 2a + ( n - 1 ) * d ]
⇒ S₁₆ = ( 16 / 2 ) [ 2 * ( - 4d + 3 ) + ( 16 - 1 ) * d ]
⇒ S₁₆ = 8 ( - 8d + 6 + 15d )
By using d = 0.5, we get,
⇒ S₁₆ = 8 ( - 8 * 0.5 + 6 + 15 * 0.5 )
⇒ S₁₆ = 8 ( - 4 + 6 + 7.5 )
⇒ S₁₆ = 8 * ( 2 + 7.5 )
⇒ S₁₆ = 8 * 9.5
⇒ S₁₆ = 76
Now, by using d = - 0.5, we get,
⇒ S₁₆ = 8 [ - 8 * ( - 0.5 ) + 6 + 15 * ( - 0.5 ) ]
⇒ S₁₆ = 8 ( 8 * 0.5 + 6 - 15 * 0.5 )
⇒ S₁₆ = 8 ( 4 + 6 - 7.5 )
⇒ S₁₆ = 8 * ( 10 - 7.5 )
⇒ S₁₆ = 8 * 2.5
⇒ S₁₆ = 20
∴ The sum of the first sixteen terms of the AP is either 76 or 20.
Answer:
The sum of the third and the seventh tems of an AP is 6 and their products is 8. Find the sum of first sixteen terms of the AP.
so using formula for n th term
A= first term
N= no. of terms
D= common difference
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
The third term of an A.P is given by,
Third term = a₁ + 2d
Seventh term of the A.P is given by,
Seventh term = a₁ + 6d
By first case given,
a₁ + 2d + a₁ + 6d = 6
2a1 + 8d = 6
Divide the whole equation by 2
a1 + 4d = 3
- a₁ = 3 - 4d-------(1)
Now by second case given,
- (a₁ + 2d) × (a₁ + 6d) = 8
Substitute the value of a₁ from equation 1
- (3 - 4d + 2d) × (3 - 4d + 6d) = 8
- (3 - 2d) × (3 + 2d) = 8
By using the identity,
(a + b) × (a - b) = a² - b²,
- 9 - 4d² = 8
- -4d² = -1
- d² = 1/4
- d = ± 1/2
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Case 1:-
- If d = 1/2
Substitute the value of d in equation 1,
A₁ = 3 - 4 × 1/2
- A₁ = 3 - 2
- A₁ = 1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Now sum of n terms of an A.P is given by,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Substitute the data,