Math, asked by amitkumar44481, 1 year ago

solve this...........​

Attachments:

Answers

Answered by Anonymous
1

Answer:

R=5.196(r); S:S'=1:27

Step-by-step explanation:

S=4(22/7)(r)(r)

S'=4(22/7)(R)(R)

but,   27(S)=108(22/7)(r)(r)=S'

hence, 4(22/7)(R)(R)=108(22/7)(r)(r)

(R)(R)=27(r)(r)                    square on both sides

R=3(1.732)(r)                     as root of 3 is 1.732

R=5.196(r)

S:S'=[4(22/7)(r)(r)]:[108(22/7)(r)(r)]=1:27

Answered by ItzYashTxg
0

➡ᴠᴀʟᴜᴍᴇ= \frac{4}{3}\pi {r}^{3}

➡ᴠᴀʟᴜᴍᴇ \: of \: 27 \: solid \: iron \: spheres=× \frac{4}{3 }\pi {r}^{3}

➡ \frac{4}{3}\pi {r}^{3} = 27 \times  \frac{4}{3}\pi {r}^{3}

➡r = 3r

Similar questions