Math, asked by FuturePoet, 1 year ago

solve this and also suggest me how to solve it please exam if you show in your notebook I surely made ur answer is brainlest

Attachments:

Answers

Answered by siddhartharao77
2
Given: x = 3 - 2 \sqrt{2}

 \frac{1}{x} =  \frac{1}{3 - 2 \sqrt{2} } *  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

                         \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2})(3 + 2 \sqrt{2)}  }

                         \frac{3 + 2 \sqrt{2} }{9 - 8}

                         \frac{3 + 2 \sqrt{2} }{1}

                       3 + 2 \sqrt{2}



Now,

x^3 -  \frac{1}{x^3} = (x -  \frac{1}{3} )^3 + 3 * x *  \frac{1}{x}(x -  \frac{1}{x})

                                    = (3 - 2 \sqrt{2} - 3 - 2 \sqrt{2})^3 + 3(3 - 2 \sqrt{2}  - 3 - 2 \sqrt{2} )

                                    = (-4 \sqrt{2} )^3 + 3(-4 \sqrt{2})

                                    = -128 \sqrt{2} - 12 \sqrt{2}

                                   -140 \sqrt{2}



Hope this helps!

mansi291: yes this is the write solutio
mansi291: i did same
siddhartharao77: Thanks mansi...
bhavya88: ok
mansi291: then mark me brainlst
Answered by Anonymous
0
Hi,

Please see the attached file!


Thanks
Attachments:
Similar questions