Math, asked by ayushiayushi12345678, 2 days ago

solve this as fast as possible​

Attachments:

Answers

Answered by mathdude500
3

Question :- Prove that

\rm \: log {\bigg[1 - \bigg \{1 -  {(1 -  {x}^{2}) }^{ - 1} \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} }  = logx \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: log {\bigg[1 - \bigg \{1 -  {(1 -  {x}^{2}) }^{ - 1} \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[1 - \bigg \{1 - \dfrac{1}{1 -  {x}^{2} }  \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[1 - \bigg \{ \dfrac{1 -  {x}^{2}  - 1}{1 -  {x}^{2} }  \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[1 - \bigg \{ \dfrac{ -   {x}^{2}}{1 -  {x}^{2} }  \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[1 - \bigg \{ \dfrac{{x}^{2}}{{x}^{2}  - 1}  \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[1 -\dfrac{ {x}^{2}  - 1}{ {x}^{2} }  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[\dfrac{ {x}^{2}  - ({x}^{2}  - 1)}{ {x}^{2} }  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[\dfrac{ {x}^{2}  - {x}^{2} +  1}{ {x}^{2} }  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[\dfrac{1}{ {x}^{2} }  \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[ {x}^{ - 2}   \bigg]}^{ - \dfrac{1}{2} } \\

\rm \:  = log {\bigg[ x\bigg]}^{( - 2) \times \dfrac{( - 1)}{2} } \\

\rm \:  =  \: logx \\

Hence,

\red{\rm\implies \: log {\bigg[1 - \bigg \{1 -  {(1 -  {x}^{2}) }^{ - 1} \bigg\}^{ - 1}  \bigg]}^{ - \dfrac{1}{2} }  = logx} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions