Math, asked by IMrGauravI, 8 months ago

Solve this by Quadratic formula
\rm{\ 8x^{2}-38x+35}

Answers

Answered by chandan4315
0

Step-by-step explanation:

hope it helps you please follow me and thanks

Attachments:
Answered by MrChauhan96
9

\bf\purple{\underline{\boxed{Question}}}

\:

Solve this by Quadratic formula

\rm{\ 8x^{2}-38x+35}

\:

\bf\purple{\underline{\boxed{Solution}}}

\:

\tt{8x^{2}-38x+35}

\:

\small\tt{where\:\:,}

\small\tt{a\:=\:8}

\small\tt{b\:=\:38}

\small\tt{c\:=\:35}

\:

\small\tt{using\: formula}\\{\small\tt{D\:=\:b^{2}-4ac}}

\:

\small\tt{\:=\:38^{2}-4\times8\times35}

\small\tt{\:=\:1444\:-\:1120}

\small\tt{D\:=\: 324}

\:

\rm{\ 8x^{2}-38x+35}

\rm{x\:=\:\frac{-b±\sqrt{ \ b^{2}-4ac}}{2a}}

\rm{x\:=\:\frac{-(-38)±\sqrt{ \ (-38)^{2}-4(8)(35)}}{2\times 8}}

\rm{x\:=\:\frac{+38±\sqrt{ 1444-1120}}{16}}

\rm{x\:=\:\frac{38±\sqrt{324}}{16}}

\rm{x\:=\:\frac{38± 18}{16}}

\:

\small\tt{There\:are\:2\:possible\:values}

\:

\small\tt{1)\:\:Postive\:}

\tt{x\:=\:\frac{38+18}{16}}

\tt{x\:=\:\frac{56}{16}}

\tt{x\:=\:{\cancel\frac{56}{16}}}

\tt{x\:=\:4}

\:

\small\tt{2)\:\:Negetive\:}

\tt{x\:=\:\frac{20}{16}}

\tt{x\:=\:{\cancel\frac{20}{16}}}

\tt{x\:=\:\frac{5}{4}}

\:

\bf\purple{\underline{\boxed{Thanks}}}

Similar questions