solve this
chapter progressions
Answers
14)
Given :-
- a = First Term = (17/2)
- d = common Difference = (3/2)
- n = No. of Terms of AP = 64 .
using AP sum formula we get,
→ Sn = (n/2)[2a + (n - 1)d]
Putting All values we get,
→ Sn = (64/2)[2*17/2 + (64-1)(3/2)]
→ Sn = 32[ 17 + (63*3)/2 ]
→ Sn = 32[ 17 + 94.5 ]
→ Sn = 32 * 111.5
→ Sn = 3568 (Option 3) (Ans.)
_________________________
15)
Given :-
- l = last Term = 8
- sum of 8 terms = (-20)
- n = No. of Terms of AP = 8
using AP sum formula we get,
→ Sn = (n/2)[First term + Last Term]
Putting All values we get,
→ (-20) = (8/2)[ a + 8 ]
→ (-20) = 4[ a + 8 ]
→ (-5) = a + 8
→ a = -5 - 8
→ a = (-13) (Option 2) (Ans.)
_________________________
16)
Given :-
- First Term = a = 24
- Common Diff. = a2 - a1 = 20 - 24 = (-4)
- Sn = 72 .
using AP sum formula we get,
→ Sn = (n/2)[2a + (n - 1)d]
Putting All values we get,
→ 72 = (n/2)[2*24 + (n-1)(-4)]
→ 72*2 = n[48 - 4n + 4 ]
→ 144 = n(52 - 4n)
→ 144 = 4n(13 - n)
→ 36 = n(13 - n)
→ 36 = 13n - n²
→ n² - 13n + 36 = 0
→ n² - 9n - 4n + 36 = 0
→ n(n - 9) - 4(n - 9) = 0
→ (n - 9)(n - 4) = 0
→ n = 9 & 4. (Option 4) (Ans.)