Math, asked by monjyotiboro, 1 month ago

Solve this !!
Confused!!!!!!!!!​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {\bigg(\dfrac{1 - i}{1 + i} \bigg) }^{ {n}^{2} }  = 1

\large\underline{\sf{To\:Find - }}

The smallest positive integer n

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {\bigg(\dfrac{1 - i}{1 + i} \bigg) }^{ {n}^{2} }  = 1

can be rewritten as on Rationalizing,

\rm :\longmapsto\: {\bigg(\dfrac{1 - i}{1 + i} \times \dfrac{1 - i}{1 - i}  \bigg) }^{ {n}^{2} }  = 1

We know,

\red{\bigg \{ \because \: (x + y)( x- y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm :\longmapsto\: {\bigg(\dfrac{ {(1 - i)}^{2} }{ {1}^{2}  -  {i}^{2} } \bigg) }^{ {n}^{2} }  = 1

We know that,

\boxed{ \rm{  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy}}

and

\boxed{ \rm{  {i}^{2} =  -  \: 1}}

So, using all these Identities, we get

\rm :\longmapsto\: {\bigg(\dfrac{1 +  {i}^{2}  - 2i}{1  -  {i}^{2} } \bigg) }^{ {n}^{2} }  = 1

\rm :\longmapsto\: {\bigg(\dfrac{1  - 1  - 2i}{1  -  ( - 1) } \bigg) }^{ {n}^{2} }  = 1

\rm :\longmapsto\: {\bigg(\dfrac{- 2i}{1   + 1} \bigg) }^{ {n}^{2} }  = 1

\rm :\longmapsto\: {\bigg(\dfrac{- 2i}{2} \bigg) }^{ {n}^{2} }  = 1

\rm :\longmapsto\: {\bigg({- i}{} \bigg) }^{ {n}^{2} }  = 1

Now, we know that,

\boxed{ \rm{  {i}^{4} = 1}}

So, it means,

\rm :\longmapsto\: {\bigg({- i}{} \bigg) }^{ {n}^{2} }  =  {i}^{4}

can be further rewritten as

\rm :\longmapsto\: {\bigg({- i}{} \bigg) }^{ {n}^{2} }  =  {( - i)}^{4}

\rm :\implies\: {n}^{2} = 4

\bf\implies \:n = 2

Additional Information :-

\boxed{ \rm{  {i}^{2} =  - 1}}

\boxed{ \rm{  {i}^{3} =  - i}}

\boxed{ \rm{  {i}^{4n} = 1 \: where \: n \: is \: natural \: number}}

If n is a natural number, then

\boxed{ \rm{  {i}^{n}  +  {i}^{n + 1}  +  {i}^{n + 2}  +  {i}^{n + 3}  = 0}}

\boxed{ \rm{  \frac{1}{i}  =  -  \: i}}

Similar questions