SOLVE THIS CORRECT ANSWER WILL BE MARKED AS BRAINLIEST
Answers
Gɪᴠᴇɴ :-
- x = 1/√[9 + 4√5]
Tᴏ Fɪɴᴅ :-
- x³ + 7x² + 16x + 7 ?
Sᴏʟᴜᴛɪᴏɴ :-
Lets First Try to Solve Denominator Inside Square Root Part :-
→ 9 + 4√5
→ 5 + 4 + 2 * 2 * √5
→ (√5)² + (2)² + 2 * 2 * √5
Comparing it with a² + b² + 2ab now,
→ (√5 + 2)²
So,
→ x = 1/√[(√5 + 2)²]
→ x = 1/(√5 + 2)
Rationalizing it,
→ x = 1/(√5 + 2) * [ (√5 - 2)/(√5 - 2) ]
→ x = (√5 - 2)/[ (√5)² - (2)² ]
→ x = (√5 - 2) / (5 - 4)
→ x = (√5 - 2)
Now,
→ (x + 2) = √5 ----------- Equation (1)
Squaring both sides we get,
→ (x + 2)² = (√5)²
→ x² + 4x + 4 = 5
→ x² + 4x - 1 = 0 -------- Equation (2)
________________
Now, Splitting The finding part :-
→ x³ + 7x² + 16x + 7
→ x³ + (4x² + 3x²) + (12x + 5x - x) + (10 - 3)
Re - arranging Them now,
→ (x³ + 4x² - x) + (3x² + 12x - 3) + (5x + 10)
→ x(x² + 4x - 1) + 3(x² + 4x - 1) + 5(x + 2)
Putting value of Equation (1) & (2) Now, we get,
→ x * 0 + 3 * 0 + 5 * √5
→ 0 + 0 + 5√5
→ 5√5 (Ans.)
[ Excellent Question. ]
Solution:
Given ,
x=1/{√9+4√5}
x= 1/{√4+5+2.√5.2}
x=1/{√(√5+2)²
x=1/(√5+2)
Now Rationalize,
=> x = 1/(√5+2) × (√5-2)/(√5+2)
=> x = √5-2/√5-4
=> x= √5-2
=> x+ 2=√5
by squaring b/s we get,
=> (x+2)²=(√5)²
=>x²+4x+4=5
=>x²+4x+4-5=0
=> x²+4x-1=0
So,
=> x³+7x²+16x+7
=> x³+4x³+3x²+12x-3+5x-x+10
=>x(x²+4x-1)+3(x²+4x-1)+5(x+2)
=>x(0)+3(0)+5(√5)
=>0+0+5√5
=>5√5