Math, asked by saurabh7442, 11 months ago

solve this differential equation dx/dt+2x-3y=t,dy/dt-3x+2y=e^2t​

Answers

Answered by BrainlyYoda
45

Solution:

Given equations as in question =>

\frac{dx}{dt} + 2x -3y = t

\frac{dy}{dt} - 3x + 2y = e^{2t}

Let D = d/dt

Then,

(D + 2)x  -3y = t               [Equation 1]

-3x + (D + 2)y = e^{2t}         [Equation 2]

Now, we have to eliminate y.

Multiply by (D + 2) on Equation 1

(D + 2)^{2} x - 3(D + 2)y = (D + 2)t \\(D + 2)^{2} x - 3(D + 2)y = Dt + 2t\\(D + 2)^{2} x - 3(D + 2)y = \frac{d}{dt} (t) + 2t\\

(D + 2)^{2} x + 3(D + 2)y = 1 + 2t       [Equation 3]

Multiply Equation 2 with 3

-9x + 3(D + 2)y = 3e^{2t}                    [Equation 4]

Add Equation 3 and Equation 4

[(D + 2)^{2} x - 3(D + 2)y] + [-9x + 3(D + 2)y] = 1 + 2t + 3e^{2t}

(D + 2)^{2} x - 3(D + 2)y -9x + 3(D + 2)y = 1 + 2t + 3e^{2t}

(D + 2)^{2} x -9x  = 1 + 2t + 3e^{2t}

(D^{2} + 4D + 4 )x -9x  = 1 + 2t + 3e^{2t}

(D^{2} + 4D + 4 - 9)x  = 1 + 2t + 3e^{2t}

(D^{2} + 4D -5)x  = 1 + 2t + 3e^{2t}

This differential equation is a second order linear differential equation having constant coefficients.

We need to solve (D² + 4D - 5)x = 0 for complementary function and the auxiliary equation from this is,

(Put D as m)

m² + 4m - 5 = 0    [Auxiliary Equation]

m² + 5m -m - 5 = 0

m(m + 5) -1(m + 5) = 0

(m + 5)(m - 1) = 0

Roots will be =>

m + 5 = 0 => m = -5

m - 1 = 0 => m = 1

m = -5, 1

Now, we know that the roots are real and different.

So,

Complementary \ Function(C.F) = C_{1} e^{-5t} +  C_{2} e^{t}

Particular \ Integral(1) [P.I(1)] =>\\ \frac{1}{D^{2} + 4D - 5 } (1 + 2t)\\

\frac{-1}{5} \frac{1}{[1 - \frac{(4D + D^{2}) }{5}] } (1 + 2t)

\frac{-1}{5} [ 1 - \frac{(4D + D^{2}) }{5}]^{-1}   (1 + 2t)

\frac{-1}{5} [ 1 + \frac{(4D + D^{2}) }{5}]  (1 + 2t)

\frac{-1}{5} [ 1 + \frac{4D }{5}]  (1 + 2t)

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}D(1 + 2t)]

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}\frac{d}{dt} (1 + 2t)]

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}*2]

\frac{-1}{5} [ 2t + \frac{13}{5}]

Particular \ Integral(2) [P.I(2)] =>\\ \frac{1}{D^{2} + 4D - 5 } 3e^{2t} \\

3\frac{e^{2t} }{4 + 4*2-5}

\frac{3e^{2t} }{7}

x = C.F + P.I(1) + P.I(2)

x = C_{1} e^{-5t} +  C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}

Now, we know Equation 1

(D + 2)x  -3y = t

3y = (D + 2)x -  t

3y = \frac{dx}{dt} + 2x -t

Put value of x

3y = \frac{d}{dt} [C_{1} e^{-5t} +  C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}] + 2[C_{1} e^{-5t} +  C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}] -t

3y = \frac{d}{dt} [C_{1} e^{-5t} (-5)+  C_{2} e^{t} - \frac{2}{5} + \frac{6e^{2t} }{7} + 2C_{1}  e^{-5t} + 2C_{2}  e^{t} - \frac{4t}{5} - \frac{26}{25} +    \frac{6e^{2t} }{7} - t

3y = -3C_{1} e^{-5t}  + 3C_{2}  e^{t} - \frac{9t}{5}  +    \frac{12e^{2t} }{7} -  \frac{36}{25}

y = -C_{1} e^{-5t}  + C_{2}  e^{t} - \frac{3t}{5}  +    \frac{4e^{2t} }{7} -  \frac{12}{25}

The solution is =>

x = C_{1} e^{-5t} +  C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}

y = -C_{1} e^{-5t}  + C_{2}  e^{t} - \frac{3t}{5}  +    \frac{4e^{2t} }{7} -  \frac{12}{25}

Similar questions