Math, asked by arun4487618, 1 year ago

solve this eqn to get two roots from use of quadratic formula
 {x}^{2}  + 9x + 16

Answers

Answered by Anonymous
9

Answer:

x= \frac{ - 9 +  \sqrt{17} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 9 -  \sqrt{17} }{2}

Step-by-step explanation:

YOU QUESTION IS THAT

○FIND TWO ROOTS FROM THIS EQN BY USE OF QUADRATIC FORMULA

 {x}^{2}  + 9x + 16

d =  {b}^{2}  - 4ac \\  \:  \:  \:  \:  =  {9}^{2}  - 64 \\   \:  \:  \:  \:  = 81 - 64 \\  \:  \:  \:  \:  = 17 \\  x =  \frac{ - b +  -  \sqrt{d} }{2a}  \\  \:  \:  \:  \:   = \frac{ - 9 +  \sqrt{17} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 9 -  \sqrt{17} }{2}

Answered by piyushkumar523
0

 {x}^{2}  + 9x + 16

d =  {b}^{2}  - 4ac \\  \:  \:  \:  \:  =  {9}^{2}  - 64 \\   \:  \:  \:  \:  = 81 - 64 \\  \:  \:  \:  \:  = 17 \\  x =  \frac{ - b +  -  \sqrt{d} }{2a}  \\  \:  \:  \:  \:   = \frac{ - 9 +  \sqrt{17} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 9 -  \sqrt{17} }{2}

Similar questions