Solve this equationX+y=3, x²+y²=29
Answers
Answered by
3
Use the second equation to provide an expression for y in terms of x to substitute into the first equation to give a quadratic equation in x.
Explanation:
First add x to both sides of the second equation to get:
y=x+3
Then substitute this expression for y into the first equation to get:
29=x2+(x+3)2=2x2+6x+9
Subtract 29 from both ends to get:
0=2x2+6x−20
Divide both sides by 2 to get:
0=x2+3x−10=(x+5)(x−2)
So x=2 or x=−5
If x=2 then y=x+3=5.
If x=−5 then y=x+3=−2
So the two solutions (x,y) are (2,5) and (−5,−2)
Explanation:
First add x to both sides of the second equation to get:
y=x+3
Then substitute this expression for y into the first equation to get:
29=x2+(x+3)2=2x2+6x+9
Subtract 29 from both ends to get:
0=2x2+6x−20
Divide both sides by 2 to get:
0=x2+3x−10=(x+5)(x−2)
So x=2 or x=−5
If x=2 then y=x+3=5.
If x=−5 then y=x+3=−2
So the two solutions (x,y) are (2,5) and (−5,−2)
Answered by
2
x + y = 3 ___ [1] ( Given )
x² + y² = 29 ( Given )
Here, a = x, b = y
⇒ ( 3 )² = 29 + 2xy
⇒ 9 = 29 + 2xy
⇒ 9 - 29 = 2xy
⇒ - 20 = 2xy
⇒ xy = - 20 / 2
⇒ xy = - 10
⇒ x = - 10 / y
Put this value in [1], we get
⇒ ( - 10 / y ) + y = 3
⇒ ( - 10 + y² ) / y = 3
⇒ y² - 3y - 10 = 0
By Middle Term Factorisation
⇒ y² - 5y + 2y - 10 = 0
⇒ y ( y - 5 ) + 2 ( y - 5 ) = 0
⇒ ( y + 2 ) ( y - 5 ) = 0
Using Zero Product Rule
⇒ ( y + 2 ) = 0 and ( y - 5 ) = 0
⇒ y = - 2, 5
Now,
x + y = 3
⇒ x - 2 = 3
⇒ x = 3 + 2
⇒ x = 5
x + y = 3
⇒ x + 5 = 3
⇒ x = 3 - 5
⇒ x = - 2
Hence,
x² + y² = 29 ( Given )
Here, a = x, b = y
⇒ ( 3 )² = 29 + 2xy
⇒ 9 = 29 + 2xy
⇒ 9 - 29 = 2xy
⇒ - 20 = 2xy
⇒ xy = - 20 / 2
⇒ xy = - 10
⇒ x = - 10 / y
Put this value in [1], we get
⇒ ( - 10 / y ) + y = 3
⇒ ( - 10 + y² ) / y = 3
⇒ y² - 3y - 10 = 0
By Middle Term Factorisation
⇒ y² - 5y + 2y - 10 = 0
⇒ y ( y - 5 ) + 2 ( y - 5 ) = 0
⇒ ( y + 2 ) ( y - 5 ) = 0
Using Zero Product Rule
⇒ ( y + 2 ) = 0 and ( y - 5 ) = 0
⇒ y = - 2, 5
Now,
x + y = 3
⇒ x - 2 = 3
⇒ x = 3 + 2
⇒ x = 5
x + y = 3
⇒ x + 5 = 3
⇒ x = 3 - 5
⇒ x = - 2
Hence,
wwwneharimjhim:
You must find x and y
Similar questions