Math, asked by jamrenovung, 11 months ago

Solve this, genius.... ​

Attachments:

Answers

Answered by RJRishabh
2

Your attachment is being prepared

Here's your answer ....

Hope it helps ...

Please mark brainliest if it helped

Attachments:
Answered by amitkumar44481
33

Question :

 \tt \: If \tan \theta =  \frac{2mn}{ {m}^{2} -  {n}^{2}  } \\  \tt \: find \: the \: other \: t \: ratio \: of \:  \theta.

Solution :

We have,

The value of tan theta,

  \tt\dagger \:  \:  \:  \tan \theta  =  \frac{Perpendicular}{Base} =  \frac{2mn}{ {m}^{2} -  {n}^{2}  }

\rule{90}1

Let's Apply Pythagoras theorem,

 \tt\longmapsto{H }^{2}  ={ P }^{2}  + {B }^{2}

Here,

  • P = 2mn.
  • B = m² - n².
  • H = ?

 \tt\longmapsto  {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

 \tt \longmapsto  {AC}^{2}  =  {2mn}^{2}  +  { ({m}^{2}  -  {n}^{2}) }^{2} .

 \tt \longmapsto  {AC}^{2}  = 4 {m}^{2}  {n}^{2}  +  {m}^{4}  +  {n}^{4} - 2 {m}^{2}   {n}^{2}

\tt\longmapsto  {AC}^{2}   =  {m}^{2}  +  {n}^{4}   + 2 {m}^{2}  {n}^{2}

\tt\longmapsto  {AC}^{2}   =  {( {m}^{2}  +   {n}^{2}  )}^{2}

\tt\longmapsto  {AC}  =  {m}^{2}   +   {n}^{2} .

\rule{120}1

Now, We got all sides.

  • AB = 2mn.
  • BC = m²- n².
  • AC = m² + n².

Let try to Find T - Ratio of theta.

 \tt\dashrightarrow \sin \theta =  \frac{P}{H}  =  \frac{2mn}{ {m}^{2} +  {n}^{2}  }

 \tt\dashrightarrow \cos \theta =  \frac{B}{H}  =  \frac{ {m}^{2} -  {n}^{2}  }{ {m}^{2}  +  {n}^{2} }

 \tt\dashrightarrow  \tan \theta =  \frac{P}{B}  =  \frac{2mn}{ {m}^{2} -  {n}^{2}  }

 \tt\dashrightarrow \csc \theta =  \frac{H}{P}  =  \frac{ {m}^{2} +  {n}^{2}  }{2mn}

 \tt\dashrightarrow \sec \theta =  \frac{H}{B}  =  \frac{ {m}^{2}  +  {n}^{2} }{ {m}^{2} -  {n}^{2}  }

 \tt\dashrightarrow  \cot \theta =  \frac{B}{P}  =  \frac{ {m}^{2} -  {n}^{2}  }{2mn}

\rule{200}2

Note : Diagram provide in attachment.

Attachments:
Similar questions