Physics, asked by Anonymous, 1 year ago

solve this ....☺☺☺

give proper answer

Attachments:

Answers

Answered by JinKazama1
10
Solution:  
23 :  Component of 
 F_{1} along x-axis  is  F_{1}(cos(30\degree)  .
     Component of  F_{2}  along x-axis is  F_{2} cos(30\degree)  .
Here ,  F_{2} is in negative x-direction .
So, 
[tex] F_{x} = F_{1} cos(30\degree) - F_{2} cos(30\degree) [/tex]
                 = 20 cos(30\degree) -10cos(30\degree)
                  = 20* \frac{ \sqrt{3} }{2} - 10* \frac{ \sqrt{3} }{2} \\ = 10 \sqrt{3} -5 \sqrt{3} \\  =5 \sqrt{3}  N


24 :  Component  F_{1}  and  F_{2} along y-axis are 
20 sin(30\degree) and 10 sin(30\degree) respectively .

Hence, 
 F_{y} =  20 sin(30\degree) + 10 sin(30\degree)  \\ F_{y} = 20 *  \frac{1}{2} + 10* \frac{1}{2} = 10+5 = 15N

25 :  The magnitude of resultant of  F_{1}  and  F_{2}
    :

 F_{net}  =  \sqrt{ F_{x}^{2}+ F_{y}^{2} }  \\  =\ \textgreater \   \sqrt{ (5 \sqrt{3} )^{2}+  (15)^{2}  } \\  =\ \textgreater \   \sqrt{75+225} =  \sqrt{300} = 10 \sqrt{3}  N


26: By Looking at the pic, we observe that 
    
tan(\theta) =  \frac{F_{y}}{F_{x}} =  \frac{5 \sqrt{3} }{15} =   \sqrt{3}

Hence, 
\theta = 60\degree
Similar questions