solve this if u have guts . Factorisation
Attachments:
Answers
Answered by
3
Solution :
x⁴ - y⁴ + x² - y²
= [ (x²)² - (y²)² ] + ( x² - y² )
= ( x² + y² )( x² - y² ) +1( x² - y² )
= ( x² - y² )( x² + y² + 1 )
= ( x + y )( x - y )( x² + y² + 1 )
••••
x⁴ - y⁴ + x² - y²
= [ (x²)² - (y²)² ] + ( x² - y² )
= ( x² + y² )( x² - y² ) +1( x² - y² )
= ( x² - y² )( x² + y² + 1 )
= ( x + y )( x - y )( x² + y² + 1 )
••••
arjjb1234pbe4kp:
galti hai be
Answered by
3
x⁴-y⁴+x²-y²
Using identity
a²-b²=(a+b)(a-b)
(x²)²-(y²)²+x²-y²
(x²+y²)(x²-y²)+(x+y)(x-y)
(x²+y²)(x+y)(x-y)+(x+y)(x-y)
Taking (x+y)(x-y) as common
(x+y)(x-y){x²+y²+1}
Using identity
a²-b²=(a+b)(a-b)
(x²)²-(y²)²+x²-y²
(x²+y²)(x²-y²)+(x+y)(x-y)
(x²+y²)(x+y)(x-y)+(x+y)(x-y)
Taking (x+y)(x-y) as common
(x+y)(x-y){x²+y²+1}
Similar questions