Math, asked by karannnn43, 9 months ago

Solve this inequality :-
 \sqrt{ \frac{ {x}^{2} + x + 1 }{ {x}^{2}  - x - 2} }  > 1

Answers

Answered by TooFree
5

Given:

\sqrt{\dfrac{x^2 + x + 1}{x^2 - x - 2} } > 1

\\

To Find:

The value of x

\\

Solution:

\sqrt{\dfrac{x^2 + x + 1}{x^2 - x - 2} } > 1

\\

Square both sides:

\dfrac{x^2 + x + 1}{x^2 - x - 2}  > 1^2

\dfrac{x^2 + x + 1}{x^2 - x - 2}  > 1

\\

Cross multiply:

x^2 + x + 1 >x^2 - x -2

2x > -3

x> - \dfrac{3}{2}

\\

Answer: x > -3/2

Answered by sadhanroydot542
7

Step-by-step explanation:

\huge\mathfrak{Given}

 \sqrt{ \frac{ {x}^{2}  + x + 1}{ {x}^{2}   - x - 2}   }  > 1

\huge\mathfrak{solution}

 \sqrt{ \frac{ {x}^{2}  + x + 1}{ {x}^{2}  - x - 2} }  > 1

square both side

 \frac{ {x}^{2}  + x + 1}{ {x}^{2}  - x - 2}  >  {1}^{2}

 \frac{ {x}^{2} + x + 1 }{ {x}^{2} - x - 2 }  > 1

cross multiply

 {x}^{2}  + x + 1 >  {x}^{2}  - x - 2 \\ 2x >  - 3 \\ x >   - \frac{ 3}{2}

Answer

x >  -  \frac{3}{2}

Hope it helpful to you

mark brainliest

Similar questions