Solve this integral as soon as possible and please don't give fake answer otherwise I will report you...
Answers
Here the concept of Integration has been used. We see that we are given a equation. Firstly we shall different it to make it in a simpler form. Then we will use the formula of integration by part and then integrate it to get our answer.
Let's do it !!
_____________________________________________
★ Solution :-
Given,
We already know that,
This will give us,
From given equation, we get
Since, canceling cos x will give us same term that is x².
Now let,
This will give us,
Since both will give us same value.
Now using applying Integration into different parts (since we have two parts here), we get
Now taking the negative sign out, we get
On integrating sec³ x dx, we get
We know that,
On applying this, we get
Now taking the LCM of first two terms, we get
Now since denominators are same, we can add them to get,
Now taking cos x in common we get,
Now let's cancel cos x from both numerator and denominator, which will give us
On rearranging, we get
Now equating the value of A, we get
_____________________________________________
★ More to know :-
• This is the Product Rule of Integration.
• This is the Difference Rule of Integration.
• This is the Multiplication by Constant Rule.
Given,
\begin{gathered}\\\;\displaystyle{\bf{\rightarrow\;\;\pink{\int\;\dfrac{x^{2}}{(x\sin\:x\;-\;\cos\:x)^{2}}\:dx}}}\end{gathered}
→∫
(xsinx−cosx)
2
x
2
dx
We already know that,
\begin{gathered}\\\;\displaystyle{\tt{:\mapsto\;\;\dfrac{d}{dx}\:(x\sin\:x\;-\;\cos\:x)\;=\;x\cos\:x\;+\;\sin\:x\;-\;\sin\:x}}\end{gathered}
:↦
dx
d
(xsinx−cosx)=xcosx+sinx−sinx
This will give us,
\begin{gathered}\\\;\displaystyle{\bf{:\mapsto\;\;\orange{\dfrac{d}{dx}\:(x\sin\:x\;-\;\cos\:x)\;=\;x\cos\:x}}}\end{gathered}
:↦
dx
d
(xsinx−cosx)=xcosx
From given equation, we get
\begin{gathered}\\\;\displaystyle{\bf{\rightarrow\;\;\int\;\dfrac{x}{\cos\:x}.\dfrac{x\cos\:x}{(x\sin\:x\;-\;\cos\:x)^{2}}\:dx}}\end{gathered}
→∫
cosx
x
.
(xsinx−cosx)
2
xcosx
dx
Since, canceling cos x will give us same term that is x².
Now let,
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\int\;\dfrac{x}{\cos\:x}.\dfrac{x\cos\:x}{(x\sin\:x\;-\;\cos\:x)^{2}}\:dx}}}\end{gathered}
→A=∫
cosx
x
.
(xsinx−cosx)
2
xcosx
dx
This will give us,
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\int\;\dfrac{x}{\cos\:x}.\dfrac{x\cos\:x}{(x\sin\:x\;-\;\cos\:x)^{2}}\:dx}}}\end{gathered}
→A=∫
cosx
x
.
(xsinx−cosx)
2
xcosx
dx
Since both will give us same value.
Now using applying Integration into different parts (since we have two parts here), we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{x}{\cos\:x}.\bigg(\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\bigg)\;-\;\int\;\bigg(\dfrac{x\cos\:x\;+\;x\sin\:x}{\cos^{2}\:x}.\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\:dx\bigg)}}}\end{gathered}
→A=
cosx
x
.(
xsinx+cosx
−1
)−∫(
cos
2
x
xcosx+xsinx
.
xsinx+cosx
−1
dx)
Now taking the negative sign out, we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{x}{\cos\:x}.\bigg(\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\bigg)\;-\;(-)\bigg(\int\;\dfrac{x\cos\:x\;+\;x\sin\:x}{\cos^{2}\:x}.\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\:dx\bigg)}}}\end{gathered}
→A=
cosx
x
.(
xsinx+cosx
−1
)−(−)(∫
cos
2
x
xcosx+xsinx
.
xsinx+cosx
−1
dx)
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{x}{\cos\:x}\:\times\:\bigg(\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\bigg)\;+\;\int\;\bigg(\sec^{3}\:x\;\times\;dx\bigg)}}}\end{gathered}
→A=
cosx
x
×(
xsinx+cosx
−1
)+∫(sec
3
x×dx)
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{x}{\cos\:x}\:\times\:\bigg(\dfrac{-\:1}{x\sin\:x\;+\;\cos\:x}\bigg)\;+\;\int\;\sec^{3}\:x\:dx}}}\end{gathered}
→A=
cosx
x
×(
xsinx+cosx
−1
)+∫sec
3
xdx
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;\int\;\sec^{3}\:x\:dx}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−x
+∫sec
3
xdx
On integrating sec³ x dx, we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;(\tan\:x\;+\;C)}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−x
+(tanx+C)
We know that,
\begin{gathered}\\\;\tt{\mapsto\;\;\tan\theta\;=\;\dfrac{\sin\theta}{\cos\theta}}\end{gathered}
↦tanθ=
cosθ
sinθ
On applying this, we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;\bigg(\dfrac{\sin\:x}{\cos\:x}\;+\;C\bigg)}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−x
+(
cosx
sinx
+C)
Now taking the LCM of first two terms, we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;\dfrac{\sin\:x(x\sin\:x\;+\;\cos\:x)}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;C}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−x
+
cosx(xsinx+cosx)
sinx(xsinx+cosx)
+C
Now since denominators are same, we can add them to get,
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x\;+\;\sin\:x(x\sin\:x\;+\;\cos\:x)}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;C}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−x+sinx(xsinx+cosx)
+C
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{-\:x\cos^{2}\:x\;+\;\sin\:x\:.\:\cos\:x}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;C}}}\end{gathered}
→A=
cosx(xsinx+cosx)
−xcos
2
x+sinx.cosx
+C
Now taking cos x in common we get,
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{\cos\:x(-\:x\cos\:x\;+\;\sin\:x)}{\cos\:x(x\sin\:x\;+\;\cos\:x)}\;+\;C}}}\end{gathered}
→A=
cosx(xsinx+cosx)
cosx(−xcosx+sinx)
+C
Now let's cancel cos x from both numerator and denominator, which will give us
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{(-\:x\cos\:x\;+\;\sin\:x)}{(x\sin\:x\;+\;\cos\:x)}\;+\;C}}}\end{gathered}
→A=
(xsinx+cosx)
(−xcosx+sinx)
+C
On rearranging, we get
\begin{gathered}\\\;\displaystyle{\sf{\rightarrow\;\;A\;=\;\bf{\dfrac{\sin\:x\;-\;x\cos\:x}{(\cos\:x\;+\;x\sin\:x)}\;+\;C}}}\end{gathered}
→A=
(cosx+xsinx)
sinx−xcosx
+C