Solve this integration. I will mark u as BRAINLIEST...
F =
Answers
Answer
0
shreyvardhan08
Ambitious
4 answers
84 people helped
Answer:
we have to solve integral \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx
first apply application : when \int\limits^a_b{f(x)}\,dx
then, f(x) = f(a + b - x)
so, I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx=\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sin(\pi-x)}}\,dx
so, 2I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx+\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sinx}}\,dx
⇒2I = \int\limits^{\pi}_0{\frac{\pi}{1-cos\alpha sinx}}\,dx
now putting, sinx = 2tan(x/2)/(1 + tan²(x/2))
so, 2I = \pi\int\limits^{\pi}_0{\frac{1}{1-cos\alpha\frac{2tan(x/2)}{1+tan^2(x/2)}}}\,dx
⇒2I/π = \int\limits^{\pi}_0{\frac{sec^2(x/2)}{1+tan^2(x/2)-cos\alpha 2tan(x/2)}}\,dx
[ because, 1 + tan²(x/2) = sec²(x/2)]
now putting, tan(x/2) = t
so, sec²(x/2)(1/2) dx = dt
⇒sec²(x/2) dx = 2dt
upper limit : tan(π) → ∞
lower limits : tan(0) → 0
⇒2I/π = \int\limits^{\infty}_0{\frac{2dt}{1+t^2-2cos\alpha t}}
1 + t² - 2cosα t = (t - cosα)² - (cos²α- 1)
= (t - cosα)² + sin²α
so, I/π = \int\limits^{\infty}_0{\frac{dt}{(t-cos\alpha)^2+sin^2\alpha}}
= \frac{1}{sin\alpha}\left[tan^{-1}\frac{1-cos\alpha}{sin\alpha}\right]^{\infty}_0
so, I = \frac{\pi}{sin\alpha}(\pi-\alpha)we have to solve integral \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx
first apply application : when \int\limits^a_b{f(x)}\,dx
then, f(x) = f(a + b - x)
so, I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx=\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sin(\pi-x)}}\,dx
so, 2I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx+\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sinx}}\,dx
⇒2I = \int\limits^{\pi}_0{\frac{\pi}{1-cos\alpha sinx}}\,dx
now putting, sinx = 2tan(x/2)/(1 + tan²(x/2))
so, 2I = \pi\int\limits^{\pi}_0{\frac{1}{1-cos\alpha\frac{2tan(x/2)}{1+tan^2(x/2)}}}\,dx
⇒2I/π = \int\limits^{\pi}_0{\frac{sec^2(x/2)}{1+tan^2(x/2)-cos\alpha 2tan(x/2)}}\,dx
[ because, 1 + tan²(x/2) = sec²(x/2)]
now putting, tan(x/2) = t
so, sec²(x/2)(1/2) dx = dt
⇒sec²(x/2) dx = 2dt
upper limit : tan(π) → ∞
lower limits : tan(0) → 0
⇒2I/π = \int\limits^{\infty}_0{\frac{2dt}{1+t^2-2cos\alpha t}}
1 + t² - 2cosα t = (t - cosα)² - (cos²α- 1)
= (t - cosα)² + sin²α
so, I/π = \int\limits^{\infty}_0{\frac{dt}{(t-cos\alpha)^2+sin^2\alpha}}
= \frac{1}{sin\alpha}\left[tan^{-1}\frac{1-cos\alpha}{sin\alpha}\right]^{\infty}_0
so, I = \frac{\pi}{sin\alpha}(\pi-\alpha)we have to solve integral \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx
first apply application : when \int\limits^a_b{f(x)}\,dx
then, f(x) = f(a + b - x)
so, I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx=\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sin(\pi-x)}}\,dx
so, 2I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx+\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sinx}}\,dx
⇒2I = \int\limits^{\pi}_0{\frac{\pi}{1-cos\alpha sinx}}\,dx
now putting, sinx = 2tan(x/2)/(1 + tan²(x/2))
so, 2I = \pi\int\limits^{\pi}_0{\frac{1}{1-cos\alpha\frac{2tan(x/2)}{1+tan^2(x/2)}}}\,dx
⇒2I/π = \int\limits^{\pi}_0{\frac{sec^2(x/2)}{1+tan^2(x/2)-cos\alpha 2tan(x/2)}}\,dx
[ because, 1 + tan²(x/2) = sec²(x/2)]
now putting, tan(x/2) = t
so, sec²(x/2)(1/2) dx = dt
⇒sec²(x/2) dx = 2dt
upper limit : tan(π) → ∞
lower limits : tan(0) → 0
⇒2I/π = \int\limits^{\infty}_0{\frac{2dt}{1+t^2-2cos\alpha t}}
1 + t² - 2cosα t = (t - cosα)² - (cos²α- 1)
= (t - cosα)² + sin²α
so, I/π = \int\limits^{\infty}_0{\frac{dt}{(t-cos\alpha)^2+sin^2\alpha}}
= \frac{1}{sin\alpha}\left[tan^{-1}\frac{1-cos\alpha}{sin\alpha}\right]^{\infty}_0
so, I = \frac{\pi}{sin\alpha}(\pi-\alpha)we have to solve integral \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx
first apply application : when \int\limits^a_b{f(x)}\,dx
then, f(x) = f(a + b - x)
so, I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx=\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sin(\pi-x)}}\,dx
so, 2I = \int\limits^{\pi}_0{\frac{x}{1-cos\alpha sinx}}\,dx+\int\limits^{\pi}_0{\frac{\pi-x}{1-cos\alpha sinx}}\,dx
⇒2I = \int\limits^{\pi}_0{\frac{\pi}{1-cos\alpha sinx}}\,dx
now putting, sinx = 2tan(x/2)/(1 + tan²(x/2))
so, 2I = \pi\int\limits^{\pi}_0{\frac{1}{1-cos\alpha\frac{2tan(x/2)}{1+tan^2(x/2)}}}\,dx
⇒2I/π = \int\limits^{\pi}_0{\frac{sec^2(x/2)}{1+tan^2(x/2)-cos\alpha 2tan(x/2)}}\,dx
[ because, 1 + tan²(x/2) = sec²(x/2)]
now putting, tan(x/2) = t
so, sec²(x/2)(1/2) dx = dt
⇒sec²(x/2) dx = 2dt
upper limit : tan(π) → ∞
lower limits : tan(0) → 0
⇒2I/π = \int\limits^{\infty}_0{\frac{2dt}{1+t^2-2cos\alpha t}}
1 + t² - 2cosα t = (t - cosα)² - (cos²α- 1)
= (t - cosα)² + sin²α
so, I/π = \int\limits^{\infty}_0{\frac{dt}{(t-cos\alpha)^2+sin^2\alpha}}
= \frac{1}{sin\alpha}\left[tan^{-1}\frac{1-cos\alpha}{sin\alpha}\right]^{\infty}_0
so, I = \frac{\pi}{sin\alpha}(\pi-\alpha)
Step-by-step explanation:
Step-by-step explanation:
hope it is helpful mark me as brainiliest