Solve this limit question
Attachments:
yagnajish2003:
hiiii
Answers
Answered by
4
tr = r/(1+ r^2 + r^4)
= r/( r^2 +1)^2 - r^2
= r/( r^2 + 1+ r)( r^2 + 1 - r)
= r^2 + 1+ r)- ( r^2 + 1 - r))/2( r^2+1-r)(r^2+1+r)
=1/2. ( 1/r^2+1- r. - 1/r^2+ 1+ r)
Summation from r= 1 to n
1/2( 1 - 1/3 + 1/3 - 1/7 +1/7.......1/n^2+1+n)
kat kat katrina kaif
1/2 ( 1- 1/n^2+ 1+ n)
1/2( n^2 + 1+ n - 1)/n^2 +1+ n
1/2( n^2 + n)/( n^2 + n +1)
1/2( 1+ 1/n)/( 1 + 1/n + 1/n^2)
put n = infinity
1/2( 1+0)/( 1+0 +0)
1/2
✌✌Dr.Dhruv✌✌
Answered by
3
Answer:
tr = r/( 1+r^2+r^4)
= r/( r^2+1)^2-r^2
= r/(r^2+1+r) (r^2+1-r)
= (r^2+1+r)-(r^2+1-r) /2(r^2+1-r)(r^2+1+r)
= 1/2 (1/r^2+1-r-1/r^2+1+r)
Step-by-step explanation:
Hope it helps you ✌✌
Similar questions