Math, asked by deepanshubisht2222, 2 days ago

solve this logarithm ​

Attachments:

Answers

Answered by mathdude500
5

Given Question :-

Find the value of x, if

\rm \: \dfrac{1}{ log_{x}(10) }  + 2 = \dfrac{2}{ log_{5}(10) }  \\

\large\underline{\sf{Solution-}}

Given equation is

\rm \: \dfrac{1}{ log_{x}(10) }  + 2 = \dfrac{2}{ log_{5}(10) }  \\

We know,

\boxed{\sf{  \:  \:  log_{a}(b) =  \frac{1}{ log_{b}(a) } \:  \: }} \\

So, using this property, we get

\rm \:  log_{10}(x) + 2 =  2log_{10}(5) \\

We know,

\boxed{\sf{  \:  \:  log_{x}( {x}^{y} ) = y \:  \: }} \\

So, using this property, we get

\rm \:  log_{10}(x) +  log_{10}( {10}^{2} )  =  log_{10}( {5}^{2} ) \\

\rm \:  log_{10}(x) +  log_{10}(100)  =  log_{10}(25) \\

We know,

\boxed{\sf{  \:  log_{a}(m)  +  log_{a}(n)  =  log_{a}(mn)  \:  \: }} \\

So, using this result, we get

\rm \:  log_{10}(100x)  =  log_{10}(25)  \\

\rm\implies \:100x = 25

\rm\implies \:x = \dfrac{1}{4} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\sf{  \:  log_{a}(m) - log_{a}(n)  =  log_{a} \: \frac{m}{n}  \:  \: }} \\

\boxed{\sf{  \:  log_{a}( {x}^{y} )  =  y \: log_{a} \: x  \:  \: }} \\

\boxed{\sf{  \:  log_{a}(a )  =  1  \:  \: }} \\

\boxed{\sf{  \:  log_{a}( {a}^{x} )  = x \:  \: }} \\

\boxed{\sf{  \:  log_{ {a}^{y} }( {a}^{x} )  =  \frac{x}{y} \:  \: }} \\

\boxed{\sf{  \:  {a}^{ log_{a}(x) } \:  =  \: x \:  \: }} \\

\boxed{\sf{  \:  {a}^{y log_{a}(x) } \:  =  \:  {x}^{y} \:  \: }} \\

Answered by jaswasri2006
1

Refer the Given Attachment.

Attachments:
Similar questions