Math, asked by 123sona, 1 year ago

solve this maths problem... On notebook ​

Attachments:

Answers

Answered by Anonymous
1

HEYA \:  \\  \\  \cos(x)  =  \cos {}^{2} (x \div 2)  -  \sin {}^{2} (x \div 2)  \\ and  \\ (1 -  \sin(x) ) = ( \cos(x \div 2)   -   \sin(x \div 2) ) {}^{2}  \\  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: ( \cos {}^{2} (x \div 2)  -  \sin {}^{2} (x \div 2) ) \\  \:  \:  \: tan {}^{ - 1}  \:  \:  \:  \:   -  -  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \cos(x \div 2)  -  \sin(x \div 2) ) {}^{2}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \cos(x \div 2)  +   \sin(x \div 2) ) \\   \:  \:  \:  tan {}^{ - 1} \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ( \cos(x \div 2 )  -  \sin(x \div 2) ) \\  \\ tan {}^{ - 1} (tan \: (45 + x \div 2))  \\    \\  = 45 + x \div 2

Similar questions