Math, asked by Anonymous, 26 days ago

Solve This; Mods And Stars...

Find the remainder when x³ + 3x² + 3x + 1 is divided by
(i) \: x -  \frac{1}{2}

Answers

Answered by xxblackqueenxx37
38

 \: \huge{{\mathfrak\red{⛄answer⛄}}}

x - \frac{1}{2}   \\

  x² + 3x² + 3x +1\:   \:  \: \div  \:  \: \: x  - \frac{1}{2}

put divisors = 0

x -  \frac{1}{2}  = 0  \\

x ➭  \frac{1}{2}  \\

Let p(x)= x³ + 3x² + 3x + 1

putting \: \:  \:  x =  \frac{1}{2}

p=</strong><strong>(\frac{1}{2})=( \frac{1}{2})^{3} +3( \frac{1}{2})^{2}+3( \frac{1}{2})+1

 =  \frac{1}{8}  + 3( \frac{1}{4} ) +  \frac{3}{2}  + 1 \\

 =  \frac{1}{8}  +  \frac{3}{4}  +  \frac{3}{2}  + 1 \\

 =  \frac{1 + 3(2) + 3(4) + 1(8)}{8} \\

 =  \frac{1 + 6 + 12 + 8}{8}  \\

 ans \:  =  \frac{27}{8}  \\

 \: Thus, remainder = p( \frac{1}{2} ) =  \frac{27}{8}  \\

----------------------------------------------

hope it was helpful to you

Answered by Anonymous
17

 \: \huge{{\mathfrak\red{⛄answer⛄}}}

x - \frac{1}{2}   \\

  x² + 3x² + 3x +1\:   \:  \: \div  \:  \: \: x  - \frac{1}{2}

put divisors = 0

x -  \frac{1}{2}  = 0  \\

x =  \frac{1}{2}  \\

Let p(x)= x³ + 3x² + 3x + 1

putting \: \:  \:  x =  \frac{1}{2}

p=( \frac{1}{2})=( \frac{1}{2})^{3} +3( \frac{1}{2})^{2}+3( \frac{1}{2})+1

 =  \frac{1}{8}  + 3( \frac{1}{4} ) +  \frac{3}{2}  + 1 \\

 =  \frac{1}{8}  +  \frac{3}{4}  +  \frac{3}{2}  + 1 \\

 =  \frac{1 + 3(2) + 3(4) + 1(8)}{8} \\

 =  \frac{1 + 6 + 12 + 8}{8}  \\

 ans \:  =  \frac{27}{8}  \\

 \: Thus, remainder = p( \frac{1}{2} ) =  \frac{27}{8}  \\

Thanks!

Similar questions