Solve this one
thanks !!
Attachments:
Answers
Answered by
19
Anonymous:
Superb bhaiya
Answered by
19
Given Equation is (x - 1)^4 + (x - 5)^4 = 82
= > (x - 1)^2(x - 1)^2 + (x - 5)^2(x - 5)^2 = 82
= > (x^2 + 1 - 2x)(x^2 + 1 - 2x) + (x^2 + 25 - 10x)(x^2 + 25 - 10x) = 82
= > (x^4 + x^2 - 2x^3 + x^2 + 1 - 2x - 2x^3 - 2x + 4x^2) + (x^4 + 25x^2 - 10x^3 + 25x^2 + 625 - 250x - 10x^3 - 250x + 100x^2) = 82
= > (x^4 - 4x^3 + 6x^2 - 4x + 1) + (x^4 - 20x^3 + 150x^2 - 500x + 625) = 82
= > x^4 - 4x^3 + 6x^2 - 4x + 1 + x^4 - 20x^3 + 150x^2 - 500x + 625 = 82
= > 2x^4 - 24x^3 + 156x^2 - 504x + 626 = 82
= > 2x^4 - 24x^3 + 156x^2 - 504x + 544 = 0
= > 2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
= > x^4 - 12x^3 + 78x^2 - 252x + 272 = 0
= > x^4 - 10x^3 - 2x^3 + 58x^2 + 20x^2 - 136x - 116x + 272 = 0
= > x^4 - 10x^3 + 58x^2 - 136x - 2x^3 + 20x^2 - 116x + 272 = 0
= > x(x^3 - 10x^2 + 58x - 136) - 2(x^3 - 10x^2 + 58x - 136) = 0
= > (x - 2)(x^3 - 10x^2 + 58x - 136) = 0
= > (x - 2)((x^3 - 6x^2 - 4x^2 + 34x + 24x - 136) = 0
= > (x - 2)((x(x^2 - 6x + 34) - 4(x^2 - 6x + 34)) = 0
= > (x - 2)(x - 4)(x^2 - 6x + 34) = 0
= > (x - 2)(x - 4)(x^2 - 6x + 34) = 0
(1)
= > x - 2 = 0
x = 2.
(2)
= > x - 4 = 0
x = 4
(3)
= > x^2 - 6x + 34 = 0
a =1, b = -6, c = 34
(i)
(ii)
Therefore the value of x = 2, 4, 3 + 5i, 3 - 5i.
Hope this helps!
= > (x - 1)^2(x - 1)^2 + (x - 5)^2(x - 5)^2 = 82
= > (x^2 + 1 - 2x)(x^2 + 1 - 2x) + (x^2 + 25 - 10x)(x^2 + 25 - 10x) = 82
= > (x^4 + x^2 - 2x^3 + x^2 + 1 - 2x - 2x^3 - 2x + 4x^2) + (x^4 + 25x^2 - 10x^3 + 25x^2 + 625 - 250x - 10x^3 - 250x + 100x^2) = 82
= > (x^4 - 4x^3 + 6x^2 - 4x + 1) + (x^4 - 20x^3 + 150x^2 - 500x + 625) = 82
= > x^4 - 4x^3 + 6x^2 - 4x + 1 + x^4 - 20x^3 + 150x^2 - 500x + 625 = 82
= > 2x^4 - 24x^3 + 156x^2 - 504x + 626 = 82
= > 2x^4 - 24x^3 + 156x^2 - 504x + 544 = 0
= > 2(x^4 - 12x^3 + 78x^2 - 252x + 272) = 0
= > x^4 - 12x^3 + 78x^2 - 252x + 272 = 0
= > x^4 - 10x^3 - 2x^3 + 58x^2 + 20x^2 - 136x - 116x + 272 = 0
= > x^4 - 10x^3 + 58x^2 - 136x - 2x^3 + 20x^2 - 116x + 272 = 0
= > x(x^3 - 10x^2 + 58x - 136) - 2(x^3 - 10x^2 + 58x - 136) = 0
= > (x - 2)(x^3 - 10x^2 + 58x - 136) = 0
= > (x - 2)((x^3 - 6x^2 - 4x^2 + 34x + 24x - 136) = 0
= > (x - 2)((x(x^2 - 6x + 34) - 4(x^2 - 6x + 34)) = 0
= > (x - 2)(x - 4)(x^2 - 6x + 34) = 0
= > (x - 2)(x - 4)(x^2 - 6x + 34) = 0
(1)
= > x - 2 = 0
x = 2.
(2)
= > x - 4 = 0
x = 4
(3)
= > x^2 - 6x + 34 = 0
a =1, b = -6, c = 34
(i)
(ii)
Therefore the value of x = 2, 4, 3 + 5i, 3 - 5i.
Hope this helps!
Similar questions