Math, asked by avneetkaurr, 1 year ago

solve this please guys
thank you

Attachments:

Answers

Answered by BhawnaAggarwalBT
10
Hey here is your answer

 {( \frac{ {x}^{a} }{ {x}^{b} }) }^{ \frac{1}{ab} }  \times  {( \frac{ {x}^{b} }{ {x}^{c} }) }^{ \frac{1}{bc} }  \times {( \frac{ {x}^{c} }{ {x}^{a} }) }^{ \frac{1}{ca} } \\  \\  \frac{ {x}^{(a \times \frac{1}{ab}) } }{ {x}^{(b \times \frac{1}{ab}) }}  \times \frac{ {x}^{(b\times \frac{1}{bc}) } }{ {x}^{(c \times \frac{1}{bc}) }}  \times \frac{ {x}^{(c\times \frac{1}{ca}) } }{ {x}^{(a \times \frac{1}{ca}) }}   \\  \\  \frac{ {x}^{ \frac{1}{b} } }{ {x}^\frac{1}{a} }  \times \frac{ {x}^{ \frac{1}{c} } }{ {x}^\frac{1}{b} }  \times \frac{ {x}^{ \frac{1}{a} } }{ {x}^\frac{1}{c} }  \\  \\

by rearranging :-

  \frac{ {x}^{ \frac{1}{a} } }{ {x}^\frac{1}{a} }  \times \frac{ {x}^{ \frac{1}{b} } }{ {x}^\frac{1}{b} }  \times \frac{ {x}^{ \frac{1}{c} } }{ {x}^\frac{1}{c} }  \\  \\
using identity

  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{(m - n)}  \\  \\  {x}^{ (\frac{1}{a}  -  \frac{1}{a} )}  \times {x}^{ (\frac{1}{b}  -  \frac{1}{b} )}  \times {x}^{ (\frac{1}{c}  -  \frac{1}{c} )}   \\  \\  {x}^{0}  \times {x}^{0}  \times {x}^{0}  \\  \\ 1 \times 1 \times 1  \:  \:  \\ ( {x}^{0}  = 1)\\  \\ 1

So, the answer of this question is \bf{1}.

hope this helps you

### BE BRAINLY ###
Answered by yillipillamalathi
3
Hope it helps you

Plz mark as brainliest
Attachments:
Similar questions