Math, asked by rachitsharma1234, 11 months ago

solve this. please I will mark your anwser brainliest ​

Attachments:

Answers

Answered by Lokaak
1

Answer:

Step-by-step explanation:

the answer is 0

and the the explanation is attached.

Attachments:
Answered by Sudhir1188
5

ANSWER:

  • THE VALUE OF THE GIVEN EXPRESSION IS 0

GIVEN:

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }

TO FIND:

  • Value of above expression

SOLUTION:

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  \\

We will rationalise the above expression :

  = \frac{1}{2 +  \sqrt{3} }  \\  =  \frac{ \: 1 \times (2 -  \sqrt{3} )}{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  = 2 -  \sqrt{3}

Now 2nd part

 =  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \\  =  \frac{2 \times ( \sqrt{5} +  \sqrt{3})  }{( \sqrt{5} -  \sqrt{3} )( \sqrt{5} +  \sqrt{3}   )}  \\  =  \frac{ \:2 \times ( \sqrt{5}  +  \sqrt{3} ) \: }{2}  \\  =  \sqrt{5}  +  \sqrt{3}

Now 3rd part

 =  \frac{1}{2 -  \sqrt{5} }  \\  =  \frac{1 \times (2 +  \sqrt{5} )}{(2 -  \sqrt{5} )(2 +  \sqrt{5)} }  \\  =  \frac{2 +  \sqrt{5} }{4 - 5}  \\  =  - 2 -  \sqrt{5}

Now putting all these together

 = 2 -  \sqrt{3}  +  \sqrt{5}  +  \sqrt{3}  - 2 -  \sqrt{5}  \\ (2 - 2) + ( \sqrt{3}  -  \sqrt{3} ) + ( - \sqrt{5}  -  \sqrt{5} ) \\  = 0 + 0 + 0 \\  = 0

THE VALUE OF THE GIVEN EXPRESSION IS 0.

Similar questions