Math, asked by vm1187946, 14 hours ago

Solve this plsss fast






plsss fast​

Attachments:

Answers

Answered by mathdude500
5

Given Question

Solve for x :

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3} =  \dfrac{5}{6}  - \dfrac{3x}{2}

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3} =  \dfrac{5}{6}  - \dfrac{3x}{2}

On taking LCM of (2 and 3 = 6) on LHS and Taking LCM of ( 2 and 6 = 6) on RHS, we get

\rm :\longmapsto\:\dfrac{3(3x - 5) + 6x + 2(2x - 3)}{6} =  \dfrac{5 - 9x}{6}

\rm :\longmapsto\:9x - 15 + 6x + 4x - 6 =  5 - 9x

\rm :\longmapsto\:(9x + 6x + 4x) - 15 - 6 =  5 - 9x

\rm :\longmapsto\:19x - 21 =  5 - 9x

\rm :\longmapsto\:19x + 9x =  5  + 21

\rm :\longmapsto\:28x =  26

\rm :\longmapsto\:x = \dfrac{26}{28}

\bf\implies \:x = \dfrac{13}{14}

VERIFICATION

Consider LHS

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3}

On substituting the value of x, we get

\rm \:  =  \: \dfrac{\dfrac{39}{14}  - 5}{2} + \dfrac{13}{14}  +  \dfrac{\dfrac{13}{7}  - 3}{3}

\rm \:  =  \: \dfrac{39- 70}{28} +  \dfrac{13}{14}  +  \dfrac{13 - 21}{21}

\rm \:  =  \: \dfrac{ - 31}{28} +  \dfrac{13}{14}  -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ - 31 + 26}{28} -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ -5}{28} -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ -15 - 32}{84}

\rm \:  =  \: -  \:  \dfrac{47}{84}

Consider RHS

\rm :\longmapsto\: \dfrac{5}{6}  - \dfrac{3x}{2}

On substituting the value of x, we get

 \rm \:  =  \:  \dfrac{5}{6}  - \dfrac{39}{28}

 \rm \:  =  \:  \dfrac{70 - 117}{84}

 \rm \:  =  \: -   \dfrac{47}{84}

Hence, LHS = RHS

Hence, Verified

Answered by OoAryanKingoO78
1

Answer:

Given Question

Solve for x :

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3} =  \dfrac{5}{6}  - \dfrac{3x}{2}

 \blue{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3} =  \dfrac{5}{6}  - \dfrac{3x}{2}

On taking LCM of (2 and 3 = 6) on LHS and Taking LCM of ( 2 and 6 = 6) on RHS, we get

\rm :\longmapsto\:\dfrac{3(3x - 5) + 6x + 2(2x - 3)}{6} =  \dfrac{5 - 9x}{6}

\rm :\longmapsto\:9x - 15 + 6x + 4x - 6 =  5 - 9x

\rm :\longmapsto\:(9x + 6x + 4x) - 15 - 6 =  5 - 9x

\rm :\longmapsto\:19x - 21 =  5 - 9x

\rm :\longmapsto\:19x + 9x =  5  + 21

\rm :\longmapsto\:28x =  26

\rm :\longmapsto\:x = \dfrac{26}{28}

\bf\implies \:x = \dfrac{13}{14}

VERIFICATION

Consider LHS

\rm :\longmapsto\:\dfrac{3x - 5}{2} + x +  \dfrac{2x - 3}{3}

On substituting the value of x, we get

\rm \:  =  \: \dfrac{\dfrac{39}{14}  - 5}{2} + \dfrac{13}{14}  +  \dfrac{\dfrac{13}{7}  - 3}{3}

\rm \:  =  \: \dfrac{39- 70}{28} +  \dfrac{13}{14}  +  \dfrac{13 - 21}{21}

\rm \:  =  \: \dfrac{ - 31}{28} +  \dfrac{13}{14}  -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ - 31 + 26}{28} -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ -5}{28} -  \dfrac{8}{21}

\rm \:  =  \: \dfrac{ -15 - 32}{84}

\rm \:  =  \: -  \:  \dfrac{47}{84}

Consider RHS

\rm :\longmapsto\: \dfrac{5}{6}  - \dfrac{3x}{2}

On substituting the value of x, we get

 \rm \:  =  \:  \dfrac{5}{6}  - \dfrac{39}{28}

 \rm \:  =  \:  \dfrac{70 - 117}{84}

 \rm \:  =  \: -   \dfrac{47}{84}

Hence, LHS = RHS

Hence, Verified

Similar questions