Math, asked by gk3977948, 9 months ago

solve this plzzzz................​

Attachments:

Answers

Answered by ShahnwazHussain1
15

Answer:

20 \sqrt{2}  {m}^{2}

Step-by-Step Explanation:

a= 15m, b= 6m c=11m

perimeter = 15 + 6 + 11 = 32m

semi \: perimeter =  \frac{32}{2} = 16m

Area =  \sqrt{s(s - a)( s- b)(s -c )}

 \sqrt{s(s - a)( s- b)( s- c)}

 \sqrt{16 \times 1 \times 10 \times 5}

 \sqrt{16 \times 2 \times 5 \times 5}

 \sqrt{(5 \times 5) \times (4 \times 4) \times 2}

5 \times 2 \sqrt{2}

20 \sqrt{2} {m}^{2}

Answered by Anonymous
8

Given :

  • a = 15 m
  • b = 11 m
  • c = 6 m

According to the question :

⟶ s = a + b + c / 2

⟶ s = 15 + 11 + 6 / 2

⟶ s = 32 / 2

⟶ s = 16

To find :

⇝Area of Triangle = √ s ( s - a ) ( s - b ) ( s - c )

√ 16 ( 16 - 15 ) ( 16 - 11 ) ( 16 - 6 )

√ 16 × 1 × 5 × 10

\bold{20 √2\:m^2}

\boxed{So,\:the\:area\:painted\:in\:colour\:=\: \bold{20 √2\:m^2}}

Formula used :

Area of triangle = √ s ( s - a ) ( s - b ) ( s - c )

Extra information :

↪Area of Rectangle = l × b

↪Area of Square = a × a / s × s

↪Area of Parallelogram = b × h

↪Area of Trapezium = ( 1 / 2 ) a + b × h

So, It's Done !!

Attachments:
Similar questions