Math, asked by bharath2407, 10 months ago

solve this problem!! ​

Attachments:

Answers

Answered by MaheswariS
2

\textbf{Given:}

x=1+log_{a}bc

y=1+log_{b}ca

z=1+log_{c}ab

\textbf{To prove:}

xy+yz+zx=xyz

\textbf{Solution:}

\text{Consider,}

x=1+log_{a}bc

x=log_{a}a+log_{a}bc

\implies\,x=log_{a}abc

\text{similarly}

y=log_{b}abc

z=log_{c}abc

x=log_{a}abc\,\implies\,a^x=abc\,\implies\,a=(abc)^{\frac{1}{x}}

y=log_{b}abc\,\implies\,b^y=abc\,\implies\,b=(abc)^{\frac{1}{y}}

z=log_{c}abc\,\implies\,c^z=abc\,\implies\,c=(abc)^{\frac{1}{z}}

\text{Now, we have}

\bf\,a=(abc)^{\frac{1}{x}}

\bf\,b=(abc)^{\frac{1}{y}}

\bf\,c=(abc)^{\frac{1}{z}}

\text{Multiplying these 3 equations, we get}

abc=(abc)^{\frac{1}{x}}(abc)^{\frac{1}{y}}(abc)^{\frac{1}{z}}

abc=(abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}

abc=(abc)^{\frac{yz+xz+xy}{xyz}}

\text{Equating powers on bothsides, we get}

\dfrac{xy+yz+zx}{xyz}=1

\implies\bf\,xy+yz+zx=xyz

Find more:

If log tan A+log tan B=0 then find log sin(A+B) where A and B are acute angles

https://brainly.in/question/15742843

Similar questions