solve this problem......
Attachments:
Answers
Answered by
2
Given Equation is sin20cos 80 + cos20sin80.
It is in the form of sinAcosB+cosAsinB = sin(A+B).
sin20cos80+cos20sin80 = sin(20 + 80)
= sin(100)
= sin(90 + 10)
= cos 10
= 0.98480.
Hope this helps!
It is in the form of sinAcosB+cosAsinB = sin(A+B).
sin20cos80+cos20sin80 = sin(20 + 80)
= sin(100)
= sin(90 + 10)
= cos 10
= 0.98480.
Hope this helps!
Kanha221:
ans = 1
Answered by
2
sin 20° cos 80° + cos 20° sin 80°
= sin ( 90°-80°) + cos ( 90°-80°) sin 80°
= cos 80° cos 80° + sin 80° sin 80°
= cos^2 80° + sin^2 80°
= 1
( Because, sin^2 theta + cos^2 theta = 1)
= sin ( 90°-80°) + cos ( 90°-80°) sin 80°
= cos 80° cos 80° + sin 80° sin 80°
= cos^2 80° + sin^2 80°
= 1
( Because, sin^2 theta + cos^2 theta = 1)
Similar questions