Math, asked by aanchaldutta13, 2 months ago

Solve this problem..​

Attachments:

Answers

Answered by arunjaat95826
1

Answer:

Hey friend, Harish here.

Here is your answer:

Given that,

1) x = \frac{5- \sqrt{3} }{5+ \sqrt{3} }x=

5+

3

5−

3

2) y = \frac{5+ \sqrt{3} }{5- \sqrt{3} }y=

5−

3

5+

3

To prove:

x^{2} -y^{2} = \frac{10 \sqrt{3} }{11}x

2

−y

2

=

11

10

3

Solution:

First we must rationalize the denominators of x & y.

To rationalize the denominators we must multiply and divide the number by it's conjugate.

Conjugate of x is 5 - √3.

Conjugate of y is 5 +√3.

Then,

x = \frac{5- \sqrt{3} }{5+ \sqrt{3} }\times \frac{5- \sqrt{3} }{5- \sqrt{3} } = \frac{(5- \sqrt{3} )^{2}}{(5+ \sqrt{3})(5- \sqrt{3}) }x=

5+

3

5−

3

×

5−

3

5−

3

=

(5+

3

)(5−

3

)

(5−

3

)

2

Now for multiplying the denominators use the identity (a+b)(a-b) = a² - b².

Then, (5 + √3) (5 - √3) = 5² - (√3)² = 25 - 3 = 22

⇒ x = \frac{(5- \sqrt{3})^{2} }{22} = \frac{(25+3-10 \sqrt{3}) }{22} = \frac{28-10 \sqrt{3} }{22} = \frac{2(14-5 \sqrt{3}) }{2\times 11} = \frac{14-5 \sqrt{3} }{11}x=

22

(5−

3

)

2

=

22

(25+3−10

3

)

=

22

28−10

3

=

2×11

2(14−5

3

)

=

11

14−5

3

Now rationalize y using the same method.

⇒ y = \frac{(5+ \sqrt{3})^{2} }{22} = \frac{(25+3+10 \sqrt{3}) }{22} = \frac{28+10 \sqrt{3} }{22} = \frac{2(14+5 \sqrt{3}) }{2\times 11} = \frac{14+5 \sqrt{3} }{11}y=

22

(5+

3

)

2

=

22

(25+3+10

3

)

=

22

28+10

3

=

2×11

2(14+5

3

)

=

11

14+5

3

Now we know that,

x² - y² = (x + y) (x - y)

⇒ (\frac{(14+5 \sqrt{3})+(14-5 \sqrt{3}) }{11})( \frac{(14+5 \sqrt{3})-(14-5 \sqrt{3})}{11})(

11

(14+5

3

)+(14−5

3

)

)(

11

(14+5

3

)−(14−5

3

)

)

⇒ ( \frac{28}{11})( \frac{10 \sqrt{3}}{11}) = \frac{280 \sqrt{3} }{121}(

11

28

)(

11

10

3

)=

121

280

3

\bold{Therefore \ the\ answer\ is\ \ \ \boxed{ \frac{280 \sqrt{3} }{121} } }Therefore the answer is

121

280

3

_______________________________________________

Hope my answer is helpful to you.

Answered by RAHULKUMAR2003
10

Step-by-step explanation:

\boxed {\boxed{ \huge{ \blue{ \bold{ \underline{ANSWER}}}}}}

\boxed {\boxed{ { \red{ \bold{ \underline{I \: HOPE \: ITS \: HELP \: YOU}}}}}}

Attachments:
Similar questions