Math, asked by 123sona, 1 year ago

solve this problem..... ​

Attachments:

Answers

Answered by Anonymous
5

HEYA \:  \\  \\ put \: x \:  = cos( \alpha ) \\  \alpha  =  \cos {}^{ - 1} ( \alpha )  \\  \\  \sin {}^{ - 1} ( 2 \times  \cos( \alpha ) \sqrt{ \sin {}^{2} ( \alpha ) }   \\ becoz \: (1 -  \cos {}^{2} ( \alpha )  =  \sin {}^{2} ( \alpha ) ) \\  \\  \sin {}^{ - 1} (  ( \sin(2 \alpha ) ) \\ becoz \:  \: 2 \times sin( \alpha ) \times  \cos( \alpha )  =  \sin(2 \alpha )  \\  \\ 2 \alpha  \\  \\ 2 \cos {}^{ - 1} ( \alpha )

Answered by anshi60
2

welcome to the concept of inverse Trigonometry

formula used:

 \sin {}^{ - 1} ( \sin(x) )  = x

solution:

we have to proof

 \sin {}^{ - 1} (2x \sqrt{1 - x {}^{2} } )  = 2 \cos {}^{ - 1} (x)

LHS

 =  \sin {}^{ - 1} (2x \sqrt{1 - x {}^{2} } )

let x= cosy

THUS , cos inverse x = y

 =  \sin {}^{ - 1} (2 \cos(y)  \sqrt{1 -  \cos {}^{2} (y) } )

 =  \sin {}^{ - 1} (2 \cos(y)  \sin(y) )

 =  \sin {}^{ - 1} ( \sin(2y) )

 = 2y

 = 2 \cos {}^{ - 1} (x)

Follow me

Mark answer as brainlist

Similar questions