SOLVE this problem attched
prove..
Attachments:
Answers
Answered by
0
Let , ( a^2 - b^2 ) = x ---------------------- (i)
( b^2 - c^2 ) = y ---------------------- (ii)
( c^2 - a^2 ) = z ----------------------- (iii)
Adding all these three equations,
a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = x + y + z
0 = x + y + z
We know that when x + y + z = 0, then x³ + y³ + z³ = 3xyz
Now,
x³ + y³ + z³ = 3xyz
By the the values of x, y and z in the above equation,
(a² - b²)³ + (b² - c²)³ + (c² - a²)³ = 3 (a² - b²) (b² - c²) (c² - a²)
= 3 (a + b ) (a - b ) (b + c ) (b -c ) (c + a ) (c - a )
= 3 (a + b) (b + c) (c + a) (a -b) (b - c) (c - a)
Hope this helps!
Answered by
1
Answer:
Let , ( a^2 - b^2 ) = x ---------------------- (i) ( b^2 - c^2 ) = y ---------------------- (ii) ( c^2 - a^2 ) = z ----------------------- (iii)
Adding all these three equations,
a^2 - b^2 + b^2 - c^2 + c^2 - a^2
= x + y + z0
= x + y + z
We know that when x + y + z = 0,
then x³ + y³ + z³ = 3xyz
Now,x³ + y³ + z³ = 3xyz
By the the values of x, y and z in the above equation,
=(a² - b²)³ + (b² - c²)³ + (c² - a²)³ = 3 (a² - b²) (b² - c²) (c² - a²)
= 3 (a + b) (b + c) (c + a) (a -b) (b - c) (c - a)
Similar questions
Hindi,
6 months ago
Math,
6 months ago
Social Sciences,
11 months ago
Math,
11 months ago
Science,
1 year ago