Math, asked by Apshrivastva, 1 year ago

solve this problem...
Calculate..
No spam. ​

Attachments:

Answers

Answered by abhi569
1

Answer:

Required result of the given equation is 9.

Step-by-step explanation:

\implies 4^{ 5 log_{4\sqrt{2}} (3-\sqrt{6}) - 6 log_{8}(\sqrt3 - \sqrt2)}

From the properties of logarithms :

  • log_{a} m =\dfrac{log_{b} m}{log_{b} a }

By using the property given above :

=&gt; {log}_{4\sqrt2}(3-\sqrt{6})</p><p>\\\\=&gt; \dfrac{log_{\sqrt2} (3-\sqrt6)}{log_{\sqrt2} (4\sqrt2)}\\\\\\\ =&gt; \dfrac{log_{\sqrt{2}} (3-\sqrt6)}{log_{\sqrt2}(\sqrt2)^5 }

We know, log_{a} a = 1

=&gt; \dfrac{log_{\sqrt2}(3-\sqrt6)}{5 log_{\sqrt2}(\sqrt2)}\\\\\\\implies \dfrac{log_{\sqrt{2}}(3-\sqrt6)}{5}

Similarly,

=&gt; {log}_{8}(\sqrt3 -\sqrt{2})</p><p>\\\\=&gt; \dfrac{log_{\sqrt2} (\sqrt3-\sqrt2)}{log_{\sqrt2} (8)}\\\\\\\ =&gt; \dfrac{log_{\sqrt{2} }(\sqrt3-\sqrt2)}{log_{\sqrt2}(\sqrt2)^6 }

We know, log_{a} a = 1

=&gt; \dfrac{log_{\sqrt2}(\sqrt3-\sqrt2)}{6 log_{\sqrt2}(\sqrt2)}\\\\\\\implies \dfrac{log_{\sqrt{2}}(\sqrt3-\sqrt2)}{6}

Thus,

\implies 4^{ 5\bigg(\frac{ log_{\sqrt2}(3-\sqrt6) }{5} \bigg) - 6\bigg(\frac{ log_{sqrt2} (\sqrt3 - \sqrt2)}{6} \bigg) }

\implies 4^{ log_{\sqrt2}(3-\sqrt6) - log_{\sqrt2}(\sqrt3-\sqrt2)}

We know, log a - log b = log( a / b )

\implies 4^{ log_{\sqrt2} \frac{3-\sqrt6}{\sqrt3-\sqrt2}}

\implies 4^{ log_{\sqrt2} \frac{\sqrt3(\sqrt3-\sqrt2)}{\sqrt3-\sqrt2}}

\implies 4^{ log_{\sqrt2} \sqrt3 }

\implies (\sqrt2)^{ 4 \times log_{\sqrt2} \sqrt3}

Using, n log b = log bⁿ

\implies (\sqrt2)^{ log_{\sqrt2}(\sqrt3)^4}

Using, a^{log_{a} b} = b

\implies (\sqrt3)^4

= > 9

Hence the required result of the given equation is 9.

Answered by Anonymous
1

Step-by-step explanation:

Hope it helps you Tuank

Attachments:
Similar questions