solve this problem in terms of dimensions
Attachments:
Answers
Answered by
1
We have,
F = 6π η rv
We know,
F ∞ ηᵃ
F ∞ rᵇ
F ∞ vˣ
So, F = k ηᵃrᵇvˣ, where k = dimensionless constant
Now, expressing dimentionally, we get
[F] = [k][ηᵃ][rᵇ][vˣ]
Or [MLT⁻²] = [ML⁻¹T⁻¹]ᵃ [L]ᵇ [LT⁻¹]ˣ
Or MLT⁻² = Mᵃ L⁻ᵃ⁺ᵇ⁺ˣ T⁻ᵃ⁻ˣ
Now,
M = Mᵃ or L = L⁻ᵃ⁺ᵇ⁺ˣ or T⁻² = T⁻ᵃ⁻ˣ
Or a = 1 or 1 = -a+b+x or 1 = -a-x ⇒ -2 = -1 -x ⇒ x = 1
⇒ 1 = -1 +b+1
⇒ b = 1
Now,
F = kη¹r¹v¹
Or F = 6π ηrv
F = 6π η rv
We know,
F ∞ ηᵃ
F ∞ rᵇ
F ∞ vˣ
So, F = k ηᵃrᵇvˣ, where k = dimensionless constant
Now, expressing dimentionally, we get
[F] = [k][ηᵃ][rᵇ][vˣ]
Or [MLT⁻²] = [ML⁻¹T⁻¹]ᵃ [L]ᵇ [LT⁻¹]ˣ
Or MLT⁻² = Mᵃ L⁻ᵃ⁺ᵇ⁺ˣ T⁻ᵃ⁻ˣ
Now,
M = Mᵃ or L = L⁻ᵃ⁺ᵇ⁺ˣ or T⁻² = T⁻ᵃ⁻ˣ
Or a = 1 or 1 = -a+b+x or 1 = -a-x ⇒ -2 = -1 -x ⇒ x = 1
⇒ 1 = -1 +b+1
⇒ b = 1
Now,
F = kη¹r¹v¹
Or F = 6π ηrv
Similar questions