Solve this problem please
Attachments:
Answers
Answered by
1
LHS:
= > (a + b + c)^3 - a^3 - b^3 - c^3
= > a^3 + b^3 + c^3 + 3ab(a + b) + 3bc(b + c) + 3ac(a + c) + 6abc - a^3 - b^3 - c^3
= > 3ab(a + b) + 3bc(b + c) + 3ac(a + c) + 6abc
= > 3[ab(a + b) + bc(b + c) + ac(a + c) + 2abc]
= > 3[ab(a + b) + b^2c + bc^2 + a^2c + ac^2 + abc + abc]
= > 3[ab(a + b) + bc(a + b) + c^2(a + b) + ac(a + b)]
= > 3(a + b)(ab + bc + ac + c^2)
= > 3(a + b)[b(c + a) + c(c + a)]
= > 3(a + b)(b + c)(c + a).
Hope this helps!
= > (a + b + c)^3 - a^3 - b^3 - c^3
= > a^3 + b^3 + c^3 + 3ab(a + b) + 3bc(b + c) + 3ac(a + c) + 6abc - a^3 - b^3 - c^3
= > 3ab(a + b) + 3bc(b + c) + 3ac(a + c) + 6abc
= > 3[ab(a + b) + bc(b + c) + ac(a + c) + 2abc]
= > 3[ab(a + b) + b^2c + bc^2 + a^2c + ac^2 + abc + abc]
= > 3[ab(a + b) + bc(a + b) + c^2(a + b) + ac(a + b)]
= > 3(a + b)(ab + bc + ac + c^2)
= > 3(a + b)[b(c + a) + c(c + a)]
= > 3(a + b)(b + c)(c + a).
Hope this helps!
siddhartharao77:
:-)
Similar questions