Math, asked by reshul, 1 year ago

solve this problem please

Attachments:

Answers

Answered by rakeshmohata
1
Hope u like my process
======================
i)

 =  >  \bf \: g(x) = (x - 3) \\  \\   =  >  \bf \: p(x) =  {x}^{3}  - 4 {x}^{2}  + x + 6 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     =  {x}^{3}  - 3 {x}^{2}   -   {x}^{2}   + 3x  - 2x + 6 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {x}^{2} (x - 3) - x(x - 3) - 2(x - 3) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = (x - 3)( {x}^{2}  - x - 2) \\  \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: = g(x) \times ( {x}^{2}  -x  - 2)
Thus..

g(x) is a factor of p(x)

___________________________
ii)

 =  >  \bf \: g(x) = (x + 2) \\  \\  =  > \bf \:  p(x) =  {x}^{3}  + 3 {x}^{2}  + 3x + 1 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {(x)}^{3} + 3 {(x)}^{2}    + 3x(1) ^{ 3 }  +  {(1)}^{3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = (x + 1) ^{3}  \\  \\
Thus g(x) is not a factor of p(x)

_____________________________
Hope this is ur required answer

Proud to help you
Similar questions