Math, asked by tejashwinipandey46, 2 months ago

solve this problem please rationalised the denominator ​

Attachments:

Answers

Answered by anitasurana782
3

Answer:

hopevit help u

Step-by-step explanation:

1st)2.5

2nd)3.2is 2.3

Answered by StormEyes
0

Solution!!

(1)

\sf \dfrac{5-3\sqrt{14}}{7+2\sqrt{14}}

\sf =\dfrac{5-3\sqrt{14}}{7+2\sqrt{14}}\times \dfrac{7-2\sqrt{14}}{7-2\sqrt{14}}

\sf =\dfrac{(5-3\sqrt{14})(7-2\sqrt{14})}{(7+2\sqrt{14})(7-2\sqrt{14})}

\sf =\dfrac{35-10\sqrt{14}-21\sqrt{14}+84}{49-4\times 14}

\sf =\dfrac{119-31\sqrt{14}}{49-56}

\sf =\dfrac{119-31\sqrt{14}}{-7}

\sf =-\dfrac{119-31\sqrt{14}}{7}

(2)

\sf \dfrac{2+3\sqrt{3}}{\sqrt{2}-\sqrt{3}}

\sf =\dfrac{2+3\sqrt{3}}{\sqrt{2}-\sqrt{3}}\times \dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}

</p><p>[tex]\sf =\dfrac{(2+3\sqrt{3})(\sqrt{2}+\sqrt{3})}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}

\sf =\dfrac{(2+3\sqrt{3})(\sqrt{2}+\sqrt{3})}{2-3}

\sf =\dfrac{(2+3\sqrt{3})(\sqrt{2}+\sqrt{3})}{-1}

\sf =-(2+3\sqrt{3})(\sqrt{2}+\sqrt{3})

\sf =-2\sqrt{2}-2\sqrt{3}-3\sqrt{6}-9

Similar questions