Math, asked by Shubham1811, 9 months ago

SOLVE THIS QUADRATIC EQUATION....

( BY SPLITTING THE MID-TERM METHOD)

THANKS FOR HELPING​

Attachments:

Answers

Answered by Anonymous
20

Step-by-step explanation:

 \frac{1}{x}  -  \frac{1}{x - 2}  = 3

By cross multiplication method, we get

 \frac{x - 2 - x}{x(x - 2)}  = 3

 \frac{ - 2}{ {x}^{2}  - 2x}  = 3

3( {x}^{2}  - 2x) =  - 2

3 {x}^{2}  - 6x =  - 2

3 {x}^{2}  - 6x + 2 = 0

Note:The roots of this quadratic equation cannot be found by splitting of middle term method.

So we have to use the formula to find the roots that is :

x =  \frac{ - b +  -  \sqrt{ {b}^{2} - 4ac } }{2a}

Here a =3,b =-6 and c=2.

Then,

x =  \frac{ - ( - 6) +  -  \sqrt{ {6}^{2} - 4 \times 3 \times 2 } }{2 \times 3}

x =  \frac{ 6 +  -  \sqrt{36 - 24} }{6}

x =  \frac{6 +  \sqrt{12} }{6}  \: or \:  \frac{6 -  \sqrt{12} }{6}

Answered by Aloi99
2

\orange{\boxed{\green{\underline{\red{\mathrm{Question:-}}}}}}

 \frac{1}{x} - \frac{1}{x-2} =3

\rule{200}{1}

\red{\boxed{\blue{\underline{\orange{\mathrm{Proof:-}}}}}}

*Cross multiply to get the Equation*

 \frac{x-2-x}{(x)×(x-2)} =3

 \frac{-2}{x^2-2x} =3

*Cross Multiply again*

→3×(x²-2x)=-2

→3x²-6x=2

→3x²-6x-2=0

S=-6[Sum of Equation]

P=-6[Product of Equation]

*As there is no Common factor, we can conclude that the Equation can be factorized by splitting the middle term method*

\rule{200}{1}

So now we will use Discriminant formula↓

→Discriminant Formula:-

d=b²-4ac

a=3

b=-6

c=-2

d=(-6)²-4×3×(-2)

→d=36+24

→d=60

→√d=±√60

→√d=±2√15

\rule{200}{1}

taking x(+)= \frac{-b+ \sqrt{d}}{2a}

 \frac{-(-6)+2 \sqrt{15}}{2×3}

 \frac{6+2 \sqrt{15}}{6}

*Take 2 common*

 \frac{\cancel{2}(3+ \sqrt{15}}{\cancel{6}}

 \frac{3+ \sqrt{15}}{3}

\rule{200}{1}

taking x(-)= \frac{-b- \sqrt{d}}{2a}

 \frac{-(-6)-2 \sqrt{15}}{2×3}

 \frac{6-2 \sqrt{15}}{6}

*Take 2 common*

 \frac{\cancel{2}(3- \sqrt{15}}{\cancel{6}}

 \frac{3- \sqrt{15}}{3}

\rule{200}{1}

Similar questions