Math, asked by gauravbhoye1, 1 year ago

Solve this question​

Attachments:

Answers

Answered by rishu6845
4

Solution--->

1) Plzzz refer the attachment

2) In 2nd step we applied law of exponent as follows

aᵐ⁻ⁿ = aᵐ a⁻ⁿ

3) We take xᵃ , xᵇ , xᶜ common from denominator of first , second and third term .

4) Now we apply another law of exponent as follows

1 / xᵐ = x⁻ᵐ

5) Then we take LCM ( x⁻ᵃ + x⁻ᵇ + x⁻ᶜ ) .

6) In last step we cut numerator and denominator because they are same and get 1 , which is LHS

Attachments:
Answered by amitkumar44481
7

 \bold \red \star \:  \large \underline{Solution:-}

 \frac{1}{1 +  {x}^{a - b} +  {x}^{a - c}  }  +  \frac{1}{1 +  {x}^{b - c} +  {x}^{b - a}  }  +  \frac{1}{1 +  {x}^{c - a}  + c - b}  = 1.

Talking LHS And try to Prove RHS:-

 \frac{1}{1 +  {x}^{a - b} +  {x}^{a - c}  }  +  \frac{1}{1 +  {x}^{b - c} +  {x}^{b - a}  }  +  \frac{1}{1 +  {x}^{c - a}  + c - b}.

Taking Common :-

 =\frac{1}{ {x}^{a} ( {x}^{ - a} +  {x}^{ - b}   +  {x}^{ - c} )}  +  \frac{1}{ {x}^{b}( {x}^{ - b}   +  {x}^{ - c}  +  {x}^{ - a}) }  +  \frac{1}{ {x}^{c} ( {x}^{ - c} +  {x}^{ - a}  +  {x}^{ - b} ) }

 =\frac{1}{ ({x}^{ - a}  +  {x}^{ - b}  +  {x}^{ - c} )}  \{  \frac{1}{ {x}^{a} }   +  \frac{1}{ {x}^{b} }  +  \frac{1}{ {x}^{c} }  \}

Can I write _______

 \implies\frac{1}{ {x}^{a} }   +  \frac{1}{ {x}^{b} }  +  \frac{1}{ {x}^{c} }   =  {x}^{ - a}  +  {x}^{ - b}   +  {x}^{ - c}

So,

 =\frac{1}{ \cancel{({x}^{ - a}  +  {x}^{ - b}  +  {x}^{ - c} )}}{ \times  \cancel{{x}^{ - a}  +  {x}^{ - b}   +  {x}^{ - c}}}. \\  \\  = 1.

Similar questions