Math, asked by prashantdubey77, 1 year ago

solve this question

Attachments:

Answers

Answered by arpitkatiyar1999
2

Step-by-step explanation:

AnswEr :

⋆ Refrence of Image is in the Diagram :

• In ∆ YRQ, we have :

\begin{lgathered}\implies\tt\tan(45 \degree) = \dfrac{QR}{YR} \\ \\\implies \tt1 = \dfrac{x}{YR} \\ \\\implies \tt YR = x \\ \\\implies \tt XP = x \qquad \qquad [ \because YR = XP]\end{lgathered}

⟹tan(45°)=

YR

QR

⟹1=

YR

x

⟹YR=x

⟹XP=x[∵YR=XP]

• In ∆ XPQ, we have :

\begin{lgathered}\implies\tt\tan(60 \degree) = \dfrac{PQ}{PX} \\ \\\implies\tt \sqrt{3} =\dfrac{(x + 40)}{x} \\ \\\implies\tt \sqrt{3}x = x + 40 \\ \\\implies\tt \sqrt{3}x - x =40 \\ \\\implies\tt x( \sqrt{3} - 1) = 40 \\ \\\implies\tt x = \dfrac{40}{( \sqrt{3} - 1)} \\\\\implies\tt x = \dfrac{40}{( \sqrt{3} - 1) } \times\dfrac{( \sqrt{3} + 1)}{(\sqrt{3} + 1)} \\ \\\implies\tt x = \dfrac{40( \sqrt{3} + 1)}{ {( \sqrt{3} )}^{2} - {(1)}^{2} } \\ \\\implies\tt x = \dfrac{40( \sqrt{3} + 1)}{3 - 1} \\ \\\implies\tt x = \dfrac{ \cancel40(\sqrt{3} + 1)}{\cancel2} \\ \\\implies\tt x =20( \sqrt{3} + 1) \\ \\\implies\tt x =20(1.732 + 1) \qquad \scriptsize[\sqrt{3} = 1.732]\\ \\\implies\tt x =20 \times 2.732 \\\\\implies \boxed{\pink{\tt x =54.64 \:metres}}\end{lgathered}

⟹tan(60°)=

PX

PQ

3

=

x

(x+40)

3

x=x+40

3

x−x=40

⟹x(

3

−1)=40

⟹x=

(

3

−1)

40

⟹x=

(

3

−1)

40

×

(

3

+1)

(

3

+1)

⟹x=

(

3

)

2

−(1)

2

40(

3

+1)

⟹x=

3−1

40(

3

+1)

⟹x=

2

4

0(

3

+1)

⟹x=20(

3

+1)

⟹x=20(1.732+1)[

3

=1.732]

⟹x=20×2.732

x=54.64metres

• H E I G H T⠀O F⠀T O W E R :

\begin{lgathered}\longrightarrow \tt Height \:of \:Tower = PQ\\\\\longrightarrow \tt Height \:of \:Tower = (QR+PR)\\\\\longrightarrow \tt Height \:of \:Tower = (x+40\:metres)\\\\\longrightarrow \tt Height \:of \:Tower = (54.64 + 40)\:metres\\\\\longrightarrow\large\boxed{\red{\tt Height \:of \:Tower = 94.64\:metres}}\end{lgathered}

⟶HeightofTower=PQ

⟶HeightofTower=(QR+PR)

⟶HeightofTower=(x+40metres)

⟶HeightofTower=(54.64+40)metres

HeightofTower=94.64metres

Answered by Anonymous05
2
Here is the answer !! Hope it helps :)
Attachments:
Similar questions