Math, asked by tudufdugcugchic, 5 months ago

SOLVE THIS QUESTION ​

Attachments:

Answers

Answered by Anonymous
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1 - sec \theta}{1 + cosec \:  \theta}  =  \frac{ \sqrt{3}  - 2}{3 \sqrt{3} }}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\bold {\underline{Given :}}}

 \tt:  \implies cos \:  \theta =  \frac{ \sqrt{3} }{2}  \\

 \red{ \bold{\underline{To \: Find :}}}

 \tt :  \implies  \frac{1 - sec \:  \theta}{1 + cosec  \:  \theta}  \\

• According to given question :

 \bold{As \: we \: know \: that} \\

 \tt:  \implies cos \:  \theta =  \frac{ \sqrt{3} }{2}  \\

 \tt:  \implies cos \:  \theta = cos \: 30 \degree

\tt:  \implies   \theta = 30 \degree

 \bold{As \: we \: know \: that}

\tt:  \implies  \frac{1 - sec \: \theta}{1 + cosec \:  \theta}  \\

\tt:  \implies   \frac{1 - sec \: 30 \degree}{1 + cosec \: 30 \degree}  \\

\tt:  \implies  \frac{1  -   \frac{2}{ \sqrt{3} } }{1 +2 }   \\

 \green{\tt:  \implies  \frac{ \sqrt{3} - 2 }{3 \sqrt{3} } }  \\

 \green{\tt:  \implies  \frac{1 - sec \theta}{1 + cosec \:  \theta}  =  \frac{ \sqrt{3}  - 2}{3 \sqrt{3} } } \\

Answered by asharaftardila
0

Answer:

answer

Step-by-step explanation:

i hope it is helpful

Attachments:
Similar questions