Math, asked by alokkashyap, 1 year ago

solve this question

Attachments:

Answers

Answered by hukam0685
1
let the number be xy
product of digits are 12,so xy= 12
number is represented as 10x+y
10x + y + 36 = 10y + x \\ 10x - x + y - 10y =  - 36 \\ 9x - 9y =  - 36 \\ x - y =  - 4 \\ place \:  - y =  - 4 - x \\ y = 4 + x \:  \:  \:  \:  \: in \: the \: first \: equation \\ x(4 + x) = 12 \\  {x}^{2} +  4x - 12 = 0 \\  {x}^{2}  + 6x - 2x - 12 = 0 \\ x(x + 6) - 2(x + 6) = 0 \\ (x + 6)(x - 2) = 0 \\ x =  - 6 \\ x = 2 \\
put these values in eq to find the values of y
y =  \frac{12}{x}  \\ y =  \frac{12}{2}  = 6 \\ y =  \frac{12}{ - 6}  =  - 2
now take both positive values .The number can be 26.
or the number can be -62( putting x=-6,y=-2)
Similar questions