Math, asked by mozammilashraf999, 1 month ago

solve this question ​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{x=\dfrac{1+t}{t^3}\,\,\,\,\,\,and\,\,\,\,\,\,y=\dfrac{3}{2t^2}+\dfrac{2}{t}}

\tt{\implies\,x=\dfrac{1}{t^3}+\dfrac{1}{t^2}\,\,\,\,\,\,and\,\,\,\,\,\,y=\dfrac{3}{2t^2}+\dfrac{2}{t}}

Differentiating each expression w.r.t. t,

\tt{\implies\,\dfrac{dx}{dt}=-\dfrac{3}{t^4}-\dfrac{2}{t^3}\,\,\,\,\,\,and\,\,\,\,\,\,\dfrac{dy}{dt}=-\dfrac{3}{t^3}-\dfrac{2}{t^2}}

\tt{\implies\,\dfrac{dx}{dt}=\dfrac{1}{t}\bigg(-\dfrac{3}{t^3}-\dfrac{2}{t^2}\bigg)\,\,\,\,\,\,and\,\,\,\,\,\,\dfrac{dy}{dt}=-\dfrac{3}{t^3}-\dfrac{2}{t^2}}

Now,

\sf{\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{-\dfrac{3}{t^3}-\dfrac{2}{t^2}}{\dfrac{1}{t}\bigg(-\dfrac{3}{t^3}-\dfrac{2}{t^2}\bigg)}}

\sf{\implies\dfrac{dy}{dx}=\dfrac{1}{\dfrac{1}{t}}}

\sf{\implies\dfrac{dy}{dx}=t}

Now,

\sf{\left|\dfrac{dy}{dx}-x\bigg(\dfrac{dy}{dx}\bigg)^3\right|}

\sf{=\left|t-\bigg(\dfrac{1+t}{t^3}\bigg)\cdot\,t^3\right|}

\sf{=\left|t-(1+t)\right|}

\sf{=\left|t-1-t\right|}

\sf{=\left|-1\right|}

\sf{=1}

Similar questions